会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Analysis method for gases and apparatus therefor
    • 气体及其设备分析方法
    • US6040915A
    • 2000-03-21
    • US147349
    • 1998-12-07
    • Shang-Qian WuJun-ichi MorishitaYoshio IshiharaTetsuya Kimijima
    • Shang-Qian WuJun-ichi MorishitaYoshio IshiharaTetsuya Kimijima
    • G01N21/39G01N21/61
    • G01N21/39G01N21/3504
    • A method for analyzing an impurity in a gas including the steps of: introducing a gas with an impurity into a first cell; introducing a gas with no impurity into a second cell; maintaining identical pressures in the first and second cells; irradiating a light from a light irradiating source; varying the frequency of the light over a frequency spectrum including an absorption frequency of the impurity; splitting the light by a splitting device in order to pass a first beam through the first cell and to pass a second beam through the second cell; measuring the intensity of the light passing through the first cell over the frequency spectrum with a first measuring device and the intensity of the light passing through the second cell over the frequency spectrum with a second measuring device; and determining an absorption spectrum of the impurity in the gas based on the difference between data measured with the first measuring device and data from measured with the second measuring device.
    • PCT No.PCT / JP98 / 01608 Sec。 371日期1998年12月7日第 102(e)日期1998年12月7日PCT提交1998年4月8日PCT公布。 WO98 / 45686 PCT公开 日期:1998年10月15日一种用于分析气体中的杂质的方法,包括以下步骤:将具有杂质的气体引入第一电池; 将无杂质的气体引入第二电池; 在第一和第二细胞中保持相同的压力; 照射来自光照射源的光; 在包括杂质的吸收频率的频谱上改变光的频率; 通过分离装置分离光,以使第一光束通过第一单元并使第二光束通过第二单元; 利用第一测量装置测量在频谱上通过第一单元的光的强度,并用第二测量装置测量通过频谱通过第二单元的光的强度; 以及基于由第一测量装置测量的数据与由第二测量装置测量的数据之间的差异来确定气体中的杂质的吸收光谱。
    • 2. 发明授权
    • Gas spectrochemical analyzer, and spectrochemical analyzing method
    • 气体光谱分析仪,光谱化学分析法
    • US06519039B1
    • 2003-02-11
    • US09423605
    • 1999-11-12
    • Jun-ichi MorishitaYoshio IshiharaShang-Qian Wu
    • Jun-ichi MorishitaYoshio IshiharaShang-Qian Wu
    • G01N2161
    • G01J3/4338
    • A gas spectroscopic analysis device for analyzing a trace impurity in a sample gas by obtaining the second derivative spectrum of the light absorption intensity by passing frequency modulated diode laser light through a low-pressure sample gas is provided with a modulation amplitude calculating device (1) for controlling the modulation amplitude of the laser light in accordance with the characteristics of diode laser (11); a spectrum calculating device (2) for calculating the peak absorption intensity and the wavelength interval between the minimum values on the left and right hand of the peak in the second derivative spectrum obtained by measurement; and a pressure adjusting device (3) for controlling the pressure inside measuring gas-cell (14) so that the value of the absorption intensity obtained at spectrum calculating device (2) becomes maximal. The optimal value of the modulation amplitude of the laser light is set so that the wavelength interval between the minimum values on the left and right hand of the peak in the second derivative spectrum is 0.0116 nm. The measurement pressure is optimized by setting the modulation amplitude to an optimal value.
    • 一种调制振幅计算装置(1)具有用于通过使调频二极管激光通过低压取样气体获得光吸收强度的二阶导数光谱来分析样品气体中的痕量杂质的气体分光分析装置, 用于根据二极管激光器(11)的特性来控制激光的调制幅度; 用于计算通过测量获得的二阶导数光谱中的峰值的左右手的峰值吸收强度和最小值之间的波长间隔的光谱计算装置(2) 以及用于控制测量气体单元(14)内的压力使得在频谱计算装置(2)处获得的吸收强度的值变得最大的压力调节装置(3)。 将激光的调制幅度的最佳值设定为使二阶导数光谱中的峰的左右两侧的最小值之间的波长间隔为0.0116nm。 通过将调制幅度设置为最佳值来优化测量压力。
    • 3. 发明授权
    • Infrared spectroscopic analysis method for gases and device employing
the method therein
    • 气体的红外光谱分析方法及其中使用的方法
    • US5703365A
    • 1997-12-30
    • US545580
    • 1995-11-20
    • Yoshio IshiharaHiroshi MasusakiShang-Qian WuKoh Matsumoto
    • Yoshio IshiharaHiroshi MasusakiShang-Qian WuKoh Matsumoto
    • G01J3/433G01N21/39G01N21/35
    • G01N21/39G01J3/433G01N21/3504G01N2021/399G01N21/3554
    • The present invention relates to a device and method for measuring an impurity in a trace concentration in a gas to be measured by means of infrared spectroscopic analysis employing a diode laser. In order to carry out analysis with high sensitivity and high accuracy, the gas to be measured is directed into sample cell 5 and placed in a low pressure state by means of pump 16. Infrared light from the wavelength region in which strong absorption peaks from the impurity can be obtained are oscillated from the diode laser 1, and a derivative absorption spectrum is measured by passing the infrared rays through sample cell 5 and reference cell 8 which is filled with the impurity alone. The spectrum for the gas to be measured and the spectrum for the impurity alone are compared, and the impurity is identified by confirming a plurality of absorption peaks originating from the impurity. Determination of the impurity is then carried out from absorption intensity of the strongest peak. In the case where molecules of the gaseous impurity form clusters in the gas to be measured, analysis is carried while dissociating the clusters by irradiating light having a photon energy of 0.5 eV or greater. The present invention is particularly suitable for carrying out analysis of trace quantities of impurities present in the gases which are used as materials for semiconductor manufacturing.
    • PCT No.PCT / JP95 / 00523 Sec。 371日期:1995年11月20日 102(e)1995年11月20日日期PCT 1995年3月22日PCT公布。 公开号WO95 / 26497 日期:1995年10月5日本发明涉及通过使用二极管激光器的红外光谱分析来测量要测量的气体中的微量浓度的杂质的装置和方法。 为了以高灵敏度和高精度进行分析,将待测量的气体引入样品池5中,并通过泵16置于低压状态。来自波长区域的红外光来自 可以获得从二极管激光器1振荡的杂质,并且通过使红外线通过单独填充有杂质的样品池5和参考电池8来测量衍生吸收光谱。 比较待测气体的光谱和单独的杂质的光谱,通过确认源自杂质的多个吸收峰来鉴定杂质。 然后从最强峰的吸收强度进行杂质测定。 在气体杂质的分子在待测量的气体中聚集的情况下,通过照射光子能量为0.5eV以上的光来解离簇,进行分析。 本发明特别适用于对用作半导体制造材料的气体中存在的微量杂质进行分析。
    • 4. 发明授权
    • Infrared spectroscopic analysis method for gases and device employing
the method therein
    • 气体的红外光谱分析方法及其中使用的方法
    • US5821537A
    • 1998-10-13
    • US887262
    • 1997-07-02
    • Yoshio IshiharaHiroshi MasusakiShang-Qian WuKoh Matsumoto
    • Yoshio IshiharaHiroshi MasusakiShang-Qian WuKoh Matsumoto
    • G01J3/433G01N21/39G01N21/35
    • G01N21/39G01J3/433G01N21/3504G01N2021/399G01N21/3554
    • A device and method for measuring an impurity in a trace concentration in a gas to be measured by infrared spectroscopic analysis employing a diode laser are provided. In order to carry out analysis with high sensitivity and high accuracy, the gas to be measured is directed into sample cell 5 and placed in a low pressure state by a pump 16. Infrared light from the wavelength region in which strong absorption peaks from the impurity can be obtained are oscillated from the diode laser 1, and a derivative absorption spectrum is measured by passing the infrared rays through sample cell 5 and reference cell 8 which is filled with the impurity alone. The spectrum for the gas to be measured and the spectrum for the impurity alone are compared, and the impurity is identified by confirming a plurality of absorption peaks originating from the impurity. Determination of the impurity is then carried out from absorption intensity of the strongest peak. In the case where molecules of the gaseous impurity form clusters in the gas to be measured, analysis is carried while dissociating the clusters by irradiating light having a photon energy of 0.5 eV or greater. The device and method are particularly suitable for carrying out analysis of trace quantities of impurities present in the gases which are used as materials for semiconductor manufacturing.
    • 提供了一种通过使用二极管激光的红外光谱分析来测量要测量的气体中的微量浓度的杂质的装置和方法。 为了以高灵敏度和高精度进行分析,将待测量的气体引入样品池5中并通过泵16置于低压状态。来自杂质的强吸收峰的红外光 可以从二极管激光器1振荡,并且通过使红外线通过单独填充有杂质的样品池5和参考单元8来测量衍生吸收光谱。 比较待测气体的光谱和单独的杂质的光谱,通过确认源自杂质的多个吸收峰来鉴定杂质。 然后从最强峰的吸收强度进行杂质测定。 在气体杂质的分子在待测量的气体中聚集的情况下,通过照射光子能量为0.5eV以上的光来解离簇,进行分析。 该装置和方法特别适用于对用作半导体制造材料的气体中存在的微量杂质进行分析。
    • 9. 发明授权
    • Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
    • 吹扫CVD装置的方法以及用于判断半导体制造装置的维护时间的方法
    • US06887721B2
    • 2005-05-03
    • US10021259
    • 2001-12-19
    • Hiroyuki HasegawaTomonori YamaokaYoshio IshiharaHiroshi MasusakiTakayuki SatouKatsumasa SuzukiHiroki Tokunaga
    • Hiroyuki HasegawaTomonori YamaokaYoshio IshiharaHiroshi MasusakiTakayuki SatouKatsumasa SuzukiHiroki Tokunaga
    • H01L21/00C23C16/44C23C16/52H01L21/205H01L21/66
    • C23C16/4408C23C16/4401C23C16/52
    • The present invention discloses a CVD apparatus which, together with being able to efficiently perform purging treatment after maintenance, uses for the purge gas a mixed gas of a gas having high thermal conductivity and an inert gas during heated flow purging treatment after maintenance to perform startup of the CVD apparatus while reducing the amount of time required for purging treatment. Purging treatment before semiconductor film formation is performed by repeating the pumping of a vacuum and the introduction of inert gas a plurality of times. In addition, in order to judge suitable maintenance times of semiconductor production apparatuses that perform corrosive gas treatment in a reaction chamber, the moisture concentration in reaction chamber is measured with moisture meter connected to the reaction chamber when performing the corrosive gas treatment, and maintenance times of the semiconductor production apparatus are determined according to changes in the moisture concentration when corrosive gas treatment is performed repeatedly. In addition, in order to measure the moisture of corrosive gas during processing while preventing obstruction of piping in a moisture monitoring apparatus and semiconductor production apparatus equipped therewith, a moisture monitoring apparatus, which is equipped with a pipe, of which one end is connected to reaction chamber into which corrosive gas flows, and a moisture meter connected to the other end of that pipe which measures the moisture contained in the corrosive gas introduced from the reaction chamber, is at least equipped with pipe heating mechanism that heats the pipe.
    • 本发明公开了一种CVD装置,其能够在维护后能够有效地进行清洗处理,在维护后的加热流动清洗处理中,使用具有高导热性的气体和惰性气体的混合气体进行吹扫,以进行启动 的CVD装置,同时减少清洗处理所需的时间。 在半导体膜形成之前的清洗处理通过重复抽真空和引入惰性气体进行多次。 此外,为了判断在反应室中进行腐蚀性气体处理的半导体制造装置的合适的维护时间,在进行腐蚀性气体处理时,在与反应室连接的水分计测量反应室中的水分浓度,并进行维护时间 根据重复进行腐蚀性气体处理时的水分浓度的变化来确定半导体制造装置。 此外,为了在加工过程中测量腐蚀性气体的湿度,同时防止水分监测装置和配备的半导体制造装置中的管道的阻塞,配备有管道的水分监测装置,其一端连接到 腐蚀性气体流入的反应室和与该管的另一端连接的湿度计,其测量从反应室引入的腐蚀性气体中含有的水分,至少配备有加热管道的管道加热机构。
    • 10. 发明授权
    • Semiconductor manufacturing method and semiconductor manufacturing apparatus
    • 半导体制造方法和半导体制造装置
    • US06794204B2
    • 2004-09-21
    • US10254601
    • 2002-09-26
    • Hiroyuki HasegawaTomonori YamaokaYoshio IshiharaHiroshi Masusaki
    • Hiroyuki HasegawaTomonori YamaokaYoshio IshiharaHiroshi Masusaki
    • G01R3126
    • C23C16/4408C23C16/4401C23C16/52C23C16/54C30B25/14C30B25/165H01L21/67242Y10S438/906Y10S438/908Y10T29/41
    • A semiconductor manufacturing method whereby reactive gas processing such as selective epitaxial growth can be carried out with high precision by correctly adjusting conditions during processing is performed by a semiconductor manufacturing apparatus which can restrict increases in the moisture content, prevent heavy metal pollution and the like, and investigate the correlation between moisture content in the process chamber and outside regions. The moisture content in a reaction chamber and in a gas discharge system of the reaction chamber are measured when a substrate is provided, and the conditions for reactive gas processing are adjusted based on the moisture content. Furthermore, the moisture content in the airtight space is measured by a first moisture measuring device which is connected to the airtight space, and thereafter, the substrate is inserted and ejected by a substrate carrying system, and a reactive gas is processed while measuring the moisture content in the reaction chamber by a second moisture measuring device, which is connected to the reaction chamber, after the moisture content in the airtight space is measured.
    • 通过半导体制造装置可以通过正确调整处理条件,可以高精度地进行诸如选择性外延生长的反应气体处理的半导体制造方法,该半导体制造装置可以限制水分含量的增加,防止重金属污染等, 并研究了处理室和外部区域的含水量之间的相关性。 在提供基板时测量反应室和反应室的气体放电系统中的含水量,并且基于水分含量调节反应气体处理条件。 此外,气密空间中的水分含量通过连接到气密空间的第一湿度测量装置测量,然后由基板承载系统插入和喷射基板,并且在测量湿气的同时处理反应气体 在测量气密空间中的水分含量之后,通过与反应室连接的第二湿度测量装置在反应室中的含量。