会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Generation of ionized air for semiconductor chips
    • 生成半导体芯片的电离空气
    • US5316970A
    • 1994-05-31
    • US895181
    • 1992-06-05
    • John S. BatchelderVaughn P. GrossRobert A. GruverPhilip C. D. HobbsKenneth D. Murray
    • John S. BatchelderVaughn P. GrossRobert A. GruverPhilip C. D. HobbsKenneth D. Murray
    • B01J19/00B01J19/12H01L21/00H01L21/304H05F3/06
    • H01L21/67028H05F3/06Y10S430/138Y10S438/909
    • Ionization of air without the use of corona discharge tips, thereby to avoid the generation of particulates from corrosion of the corona tips, is accomplished by use of a laser beam focussed to a small focal volume of intense electric field adjacent a semiconductor chip. The electric field is sufficiently intense to ionize air. In the manufacture of a semiconductor circuit chip, during those steps which are conducted in an air environment, opportunity exists to remove from a surface of a chip, or wafer, charge acquired during the manufacturing process. The ionized air is passed along the chip surface. Ions in the air discharge local regions of the chip surface which have become charged by steps of a manufacturing process. By way of further embodiment of the invention, the ionization may be produced by injection of molecules of water into the air, which molecules are subsequently ionized by a laser beam and directed toward the chip via a light shield with the aid of a magnetic field.
    • 通过使用聚焦于与半导体芯片相邻的强电场的小焦点体积的激光束来实现空气的离子化,而不使用电晕放电尖端,从而避免由于电晕尖端的腐蚀而产生微粒。 电场足够强以使空气电离。 在半导体电路芯片的制造中,在空气环境中进行的那些步骤中,存在从制造过程中获取的芯片或晶片的表面去除电荷的机会。 电离空气沿芯片表面通过。 芯片表面的空气放电局部区域中的离子通过制造过程的步骤而被充电。 通过本发明的进一步的实施方式,电离可以通过将水分子注入到空气中来产生,该分子随后通过激光束被电离,并借助于磁场通过光屏指向芯片。
    • 2. 发明授权
    • Generation of ionized air for semiconductor chips
    • 生成半导体芯片的电离空气
    • US5432670A
    • 1995-07-11
    • US166509
    • 1993-12-13
    • John S. BatchelderVaughn P. GrossRobert A. GruverPhilip C. D. HobbsKenneth D. Murray
    • John S. BatchelderVaughn P. GrossRobert A. GruverPhilip C. D. HobbsKenneth D. Murray
    • B01J19/00B01J19/12H01L21/00H01L21/304H05F3/06
    • H01L21/67028H05F3/06Y10S430/138Y10S438/909
    • Ionization of air without the use of corona discharge tips, thereby to avoid the generation of particulates from corrosion of the corona tips, is accomplished by use of a laser beam focussed to a small focal volume of intense electric field adjacent a semiconductor chip. The electric field is sufficiently intense to ionize air. In the manufacture of a semiconductor circuit chip, during those steps which are conducted in an air environment, opportunity exists to remove from a surface of a chip, or wafer, charge acquired during the manufacturing process. The ionized air is passed along the chip surface. Ions in the air discharge local regions of the chip surface which have become charged by steps of a manufacturing process. By way of further embodiment of the invention, the ionization may be produced by injection of molecules of water into the air, which molecules are subsequently ionized by a laser beam and directed toward the chip via a light shield with the aid of a magnetic field.
    • 通过使用聚焦于与半导体芯片相邻的强电场的小焦点体积的激光束来实现空气的离子化,而不使用电晕放电尖端,从而避免由于电晕尖端的腐蚀而产生微粒。 电场足够强以使空气电离。 在半导体电路芯片的制造中,在空气环境中进行的那些步骤中,存在从制造过程中获取的芯片或晶片的表面去除电荷的机会。 电离空气沿芯片表面通过。 芯片表面的空气放电局部区域中的离子通过制造过程的步骤而被充电。 通过本发明的进一步的实施方式,电离可以通过将水分子注入到空气中来产生,该分子随后通过激光束被电离,并借助于磁场通过光屏指向芯片。
    • 4. 发明授权
    • Static resistant reticle
    • 防静电标线
    • US06180291B2
    • 2001-01-30
    • US09235254
    • 1999-01-22
    • Andrew BessyJames P. DoyleVaughn P. GrossC. Richard GuarnieriRick J. HehKenneth D. MurrayJames L. Speidell
    • Andrew BessyJames P. DoyleVaughn P. GrossC. Richard GuarnieriRick J. HehKenneth D. MurrayJames L. Speidell
    • G03F900
    • G03F1/40G03F1/48
    • A static resistant reticle for use in photolithography having optimal transmission and reduced electrostatic discharge. The reticle comprises a substrate, a patterning layer, and two layers of material having a first refractive index and a second refractive index wherein the first refractive index is greater than the second refractive index and at least one of the layers is conductive. The refractive indices and thickness of the layers are matched to create an anti-reflective coating. The anti-reflective coating optimizes transmission of light through the reticle substrate to about 98.0% to about 99.5% at a wavelength of about 360 nm to about 370 nm. The conductivity of at least one of the layers reduces electrostatic discharge further improving delineation of the pattern projected onto a silicon wafer of a semiconductor device. Preferably, the anti-reflective coating comprises two or more layers of cermet material. The layer of material having a first refractive index is most preferably ruthenium oxide or ruthenium oxide with alumina. The second layer of material having a second refractive index is most preferably silica. A method of fabricating a static resistant reticle, and a method of patterning a silicon wafer using the reticle of the present invention is also described.
    • 用于光刻的具有最佳透射和减少静电放电的抗静电掩模版。 掩模版包括衬底,图案化层和具有第一折射率和第二折射率的两层材料,其中第一折射率大于第二折射率,并且至少一层是导电的。 匹配层的折射率和厚度以产生抗反射涂层。 抗反射涂层在约360nm至约370nm的波长下优化透过标线基底的光的透过率至约98.0%至约99.5%。 这些层中的至少一层的电导率降低了静电放电,进一步改善了投影到半导体器件的硅晶片上的图案的描绘。 优选地,抗反射涂层包括两层或多层金属陶瓷材料。 具有第一折射率的材料层最优选氧化钌或氧化钌与氧化铝。 具有第二折射率的第二层材料最优选是二氧化硅。 还描述了制造防静电掩模版的方法,以及使用本发明的掩模版图案化硅晶片的方法。