会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices
    • 超掺杂半导体材料和超掺杂半导体材料和器件的方法
    • US20090064922A1
    • 2009-03-12
    • US11708652
    • 2007-02-20
    • Thomas D. BooneEric S. HarmonRobert D. KoudelkaDavid B. SalzmanJerry M. Woodall
    • Thomas D. BooneEric S. HarmonRobert D. KoudelkaDavid B. SalzmanJerry M. Woodall
    • C30B15/14C30B23/02
    • H01L33/025C30B23/02C30B25/02C30B29/40C30B29/403C30B29/406H01L21/02395H01L21/02538H01L21/02546H01L21/02573H01L21/02579H01L21/02631H01L29/207H01L29/36H01L29/66318H01L29/66462H01L29/66924H01L29/7371H01L29/7785H01L29/802
    • Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems.Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
    • 公开了用于生产高掺杂半导体材料的方法。 使用本发明,可以实现超过传统的已建立的载流子饱和极限而没有有害的副作用的掺杂密度。 此外,公开了高度掺杂的半导体材料,以及使用所述材料的改进的电子和光电子器件/部件。 通过本发明实现的创新材料和工艺为各种基于半导体的微电子和光电子器件/系统产生显着的性能改进和/或降低成本。 材料在富含阴离子的环境中生长,在优选的实施方案中,其在贫氧环境中生长期间由适度的底物温度产生。 与现有技术材料相比,这些材料在较高的掺杂浓度下表现出较少的非辐射复合中心,并且高度掺杂的物质状态可以表现出在较高的掺杂水平和较高的多数载流子浓度的情况下以辐射复合为主的少数载流子寿命, 。 这些新型材料所能实现的重要应用包括高性能电子或光电子器件,可以更小更快地捕获或发光,而高性能电子器件(如可以更小更快更冷却的晶体管)。
    • 3. 发明授权
    • Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices
    • 超掺杂半导体材料和超掺杂半导体材料和器件的方法
    • US07179329B2
    • 2007-02-20
    • US10277352
    • 2002-10-22
    • Thomas BooneEric S. HarmonRobert D. KoudelkaDavid B. SalzmanJerry M. Woodall
    • Thomas BooneEric S. HarmonRobert D. KoudelkaDavid B. SalzmanJerry M. Woodall
    • C30B9/00
    • H01L33/025C30B23/02C30B25/02C30B29/40C30B29/403C30B29/406H01L21/02395H01L21/02538H01L21/02546H01L21/02573H01L21/02579H01L21/02631H01L29/207H01L29/36H01L29/66318H01L29/66462H01L29/66924H01L29/7371H01L29/7785H01L29/802
    • Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems.Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
    • 公开了用于生产高掺杂半导体材料的方法。 使用本发明,可以实现超过传统的已建立的载流子饱和极限而没有有害的副作用的掺杂密度。 此外,公开了高度掺杂的半导体材料,以及使用所述材料的改进的电子和光电子器件/部件。 通过本发明实现的创新材料和工艺为各种基于半导体的微电子和光电子器件/系统产生显着的性能改进和/或降低成本。 材料在富含阴离子的环境中生长,在优选的实施方案中,其在贫氧环境中生长期间由适度的底物温度产生。 与现有技术材料相比,这些材料在较高的掺杂浓度下表现出较少的非辐射复合中心,并且高度掺杂的物质状态可以表现出在较高的掺杂水平和较高的多数载流子浓度的情况下以辐射复合为主的少数载流子寿命, 。 这些新型材料所能实现的重要应用包括高性能电子或光电子器件,可以更小更快地捕获或发光,而高性能电子器件(如可以更小更快更冷却的晶体管)。
    • 6. 发明授权
    • LTG AlGaAs non-linear optical material and devices fabricated therefrom
    • LTG AlGaAs非线性光学材料及其制造的器件
    • US5508829A
    • 1996-04-16
    • US264177
    • 1994-06-22
    • John L. FreeoufRodney T. HodgsonPeter D. KirchnerMichael R. MellochJerry M. WoodallDavid D. Nolte
    • John L. FreeoufRodney T. HodgsonPeter D. KirchnerMichael R. MellochJerry M. WoodallDavid D. Nolte
    • G02F1/355G02F1/015G02F1/35H01L31/0232
    • G02F1/3551G02F2202/101G03H2001/0264
    • A light responsive device (10) has a body (12) that includes a matrix comprised of Group III-V material, the matrix having inclusions (14) comprised of a Group V material contained therein. The body is responsive to a presence of a light beam that has a spatially varying intensity for modifying in a corresponding spatially varying manner a distribution of trapped photoexcited charge carriers within the body. The distribution of trapped charge carriers induces a corresponding spatial variation in at least one optical property of the Group III-V material, such as the index of refraction of the Group III-V material and/or an absorption coefficient of the Group III-V material. The Group III-V material is comprised of LTG GaAs:As or LTG AlGaAs:As. In an optical storage medium embodiment of the invention the spatial variation in the intensity of the light beam results from a simultaneous application of a first light beam (LB1) and a second light beam (LB2) to the body, and from interference fringes resulting from an intersection of said first and second light beams.
    • 光响应装置(10)具有主体(12),其包括由III-V族材料构成的基体,所述基体具有由其中所含的V族材料构成的夹杂物(14)。 身体响应于存在具有空间变化的强度的光束,以便以对应的空间变化的方式修改被俘获的光激发电荷载体在体内的分布。 捕获的电荷载体的分布在III-V族材料的至少一种光学性质中引起相应的空间变化,例如III-V族材料的折射率和/或III-V族的吸收系数 材料。 III-V族材料由LTG GaAs:As或LTG AlGaAs:As组成。 在本发明的光学存储介质的实施例中,光束的强度的空间变化是由于将第一光束(LB1)和第二光束(LB2)同时施加到主体,并且由干涉条纹 所述第一和第二光束的交叉。