会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Melt surface position monitoring apparatus in silicon single crystal growth process
    • 熔体表面位置监测装置在硅单晶生长过程中
    • US20070277727A1
    • 2007-12-06
    • US11802792
    • 2007-05-25
    • Hiroshi HayakawaTokuji Maeda
    • Hiroshi HayakawaTokuji Maeda
    • C30B15/00C30B27/02C30B23/00
    • C30B15/20C30B29/06Y10T117/10Y10T117/1004Y10T117/1008Y10T117/1012Y10T117/1024Y10T117/1032Y10T117/1072
    • The liquid surface position of the melt in the crucible in the silicon single crystal growth process utilizing the Czochralski method is monitored using the melt surface position on the occasion of seeding as a reference position and an estimated melt surface position can be calculated according to every situation, so that the distance between the melt and the thermal shield or water-cooling structure can be controlled with high precision. When the estimated melt surface position passes a preset upper limit and approaches the thermal shield, an alarm goes off and, further, when the melt comes into contact with the thermal shield or approaches the water-cooling structure, an alarm goes off if desired and, at the same time, the crucible is forcedly stopped from moving, so that a serious accident such as steam-incurred explosion resulting from the melt coming into contact with the water-cooling structure can be prevented. Accordingly, the apparatus can be widely applied as a melt surface position monitoring apparatus making it possible to safely operate any silicon single crystal growth apparatus utilizing the Czochralski method.
    • 使用Czochralski方法的硅单晶生长工艺中的坩埚中的熔体的液体表面位置使用在接种时的熔融表面位置作为参考位置进行监测,并且可以根据每种情况计算估计的熔体表面位置 ,从而可以高精度地控制熔体与热屏蔽或水冷结构之间的距离。 当估计的熔体表面位置经过预设的上限并接近热屏蔽时,报警器熄灭,此外,当熔体与热屏蔽接触或接近水冷结构时,如果需要则报警熄灭, 同时,坩埚被强制停止移动,从而可以防止熔体与水冷结构接触引起的蒸汽引起的爆炸等严重事故。 因此,可以广泛地应用该装置作为熔体表面位置监测装置,使得可以使用Czochralski方法安全地操作任何硅单晶生长装置。
    • 2. 发明授权
    • Melt surface position monitoring apparatus in silicon single crystal growth process
    • 熔体表面位置监测装置在硅单晶生长过程中
    • US08012258B2
    • 2011-09-06
    • US11802792
    • 2007-05-25
    • Hiroshi HayakawaTokuji Maeda
    • Hiroshi HayakawaTokuji Maeda
    • C30B15/00
    • C30B15/20C30B29/06Y10T117/10Y10T117/1004Y10T117/1008Y10T117/1012Y10T117/1024Y10T117/1032Y10T117/1072
    • The liquid surface position of the melt in the crucible in the silicon single crystal growth process utilizing the Czochralski method is monitored using the melt surface position on the occasion of seeding as a reference position and an estimated melt surface position can be calculated according to every situation, so that the distance between the melt and the thermal shield or water-cooling structure can be controlled with high precision. When the estimated melt surface position passes a preset upper limit and approaches the thermal shield, an alarm goes off and, further, when the melt comes into contact with the thermal shield or approaches the water-cooling structure, an alarm goes off if desired and, at the same time, the crucible is forcedly stopped from moving, so that a serious accident such as steam-incurred explosion resulting from the melt coming into contact with the water-cooling structure can be prevented. Accordingly, the apparatus can be widely applied as a melt surface position monitoring apparatus making it possible to safely operate any silicon single crystal growth apparatus utilizing the Czochralski method.
    • 使用Czochralski方法的硅单晶生长工艺中的坩埚中的熔体的液体表面位置使用在接种时的熔融表面位置作为参考位置进行监测,并且可以根据每种情况计算估计的熔体表面位置 ,从而可以高精度地控制熔体与热屏蔽或水冷结构之间的距离。 当估计的熔体表面位置经过预设的上限并接近热屏蔽时,报警器熄灭,此外,当熔体与热屏蔽接触或接近水冷结构时,如果需要则报警熄灭, 同时,坩埚被强制停止移动,从而可以防止熔体与水冷结构接触引起的蒸汽引起的爆炸等严重事故。 因此,可以广泛地应用该装置作为熔体表面位置监测装置,使得可以使用Czochralski方法安全地操作任何硅单晶生长装置。
    • 5. 发明申请
    • SYSTEM MANAGEMENT APPARATUS AND SYSTEM MANAGEMENT METHOD
    • 系统管理装置和系统管理方法
    • US20130080604A1
    • 2013-03-28
    • US13378066
    • 2011-09-22
    • Hiroshi HayakawaTakeshi ArisakaTakaki KurodaTakumi Tomita
    • Hiroshi HayakawaTakeshi ArisakaTakaki KurodaTakumi Tomita
    • G06F15/177
    • H04L41/022H04L41/12
    • The present invention is for efficiently managing large numbers of apparatuses using multiple management protocols. A management information acquisition part 1A uses multiple different management protocols P1 and P2 to acquire management information for each of the management protocols from each apparatus 3. Anode configuration information management part 1B identifies apparatus configuration information acquired from the same apparatus of the respective apparatuses 3 by comparing the apparatus configuration information, and collectively manages these multiple pieces of apparatus configuration information as a single piece of apparatus configuration information. A component information management part 1C identifies multiple pieces of component information related to the same component, and manages these identified multiple pieces of component information after associating these pieces information with each other.
    • 本发明是为了有效地管理使用多种管理协议的大量设备。 管理信息获取部1A使用多个不同的管理协议P1和P2从每个装置3获取每个管理协议的管理信息。阳极配置信息管理部分1B识别从各个装置3的相同装置获取的装置配置信息, 比较装置配置信息,并将这些多件装置配置信息共同管理为单件装置配置信息。 分量信息管理部分1C识别与相同分量相关的多个分量信息,并且在将这些分块信息彼此关联之后管理这些识别的多个分量信息。
    • 8. 发明授权
    • Silicon annealed wafer and silicon epitaxial wafer
    • 硅退火晶片和硅外延晶片
    • US07273647B2
    • 2007-09-25
    • US10809712
    • 2004-03-26
    • Hideshi NishikawaNobumitsu TakaseKazuyuki EgashiraHiroshi Hayakawa
    • Hideshi NishikawaNobumitsu TakaseKazuyuki EgashiraHiroshi Hayakawa
    • B32B9/04
    • C30B33/00C30B29/06H01L21/3225Y10T428/21
    • A silicon annealed wafer having a sufficient thick layer free from COP defects on the surface, and a sufficient uniform BMD density in the inside can be produced by annealing either a base material wafer having nitrogen at a concentration of less than 1×1014 atoms/cm3, COP defects having a size of 0.1 μm or less in the highest frequency of occurrence and no COP defects having a size of 0.2 μm or more, oxygen precipitates at a density of 1×104 counts/cm2 or more, and BMDs (oxygen precipitates), where the ratio of the maximum to the minimum of the BMD density in the radial direction of the wafer is 3 or less, or a base material wafer grown at specific average temperature gradients within specific temperature ranges and specific cooling times for a single crystal at a nitrogen concentration of less than 1×1014 atoms/cm3, employing the Czochralski method. Moreover, a silicon epitaxial wafer having very small defects and a uniform BMD distribution in the inside can be formed by growing an epitaxial layer on the surface of either the first type base material wafer or the second type base material wafer. Both the silicon annealed wafer and the silicon epitaxial wafer greatly reduce the rate of producing defective devices, thereby enabling the device productivity to be enhanced.
    • 具有在表面上没有COP缺陷的足够厚的厚层的硅退火晶片,并且可以通过退火具有小于1×10 14的浓度的氮的基材晶片来制造内部的足够均匀的BMD密度, / SUP>原子/ cm 3,出现发生频率的大小为0.1μm以下的COP缺陷,没有大小为0.2μm以上的COP缺陷,氧浓度为 1×10 4个/ cm 2以上的BMD(氧沉淀物),其中晶片的径向BMD密度的最大值与最小值之比 在特定温度范围内以特定平均温度梯度生长的基材晶片和氮浓度小于1×10 14原子/ cm 2的单晶的比冷却时间为3以下, 3,采用Czochralski法。 此外,可以通过在第一类型基材晶片或第二类型基材晶片的表面上生长外延层来形成具有非常小缺陷和均匀的BMD分布的硅外延晶片。 硅退火晶片和硅外延晶片都大大降低了制造缺陷器件的速率,从而能够提高器件的生产率。