会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Control apparatus
    • 控制装置
    • US4785780A
    • 1988-11-22
    • US69514
    • 1987-07-02
    • Katsuhiko Kawai
    • Katsuhiko Kawai
    • F02B75/02F02D31/00F02D41/14F02D41/16F02P5/145
    • F02P5/1455F02D31/003F02D41/1401F02D41/16F02B2075/027F02D2041/1409F02D2041/1415F02D2041/1433Y02T10/46
    • A state value related to operating state of a controlled object is detected. An actuator serves to adjust the operating state of the controlled object. A target control quantity of the actuator is determined on the basis of the detected state value. The actuator is controlled in accordance with the determined target control quantity. The detected state value and the determined target control quantity are stored. A new target control quantity of the actuator is calculated on the basis of a vector of predetermined optimal feedback gain and a vector of state variables. The optimal feedback gain depends on model constants in a dynamic model which is an approximation to the operating state of the controlled object. The state variables are composed directly of the stored state value and the stored control quantity.
    • 检测与受控对象的操作状态相关的状态值。 致动器用于调节受控对象的操作状态。 基于检测到的状态值来确定致动器的目标控制量。 执行器根据确定的目标控制量进行控制。 存储检测到的状态值和确定的目标控制量。 基于预定的最佳反馈增益的向量和状态变量的向量来计算执行器的新的目标控制量。 最佳反馈增益取决于动态模型中的模型常数,该模型常数是受控对象的运行状态的近似值。 状态变量直接由存储的状态值和存储的控制量组成。
    • 6. 发明授权
    • Control apparatus for internal combustion engine
    • 内燃机控制装置
    • US06718252B2
    • 2004-04-06
    • US09981241
    • 2001-10-18
    • Katsuhiko KawaiHisashi IidaMuneyuki Iwata
    • Katsuhiko KawaiHisashi IidaMuneyuki Iwata
    • F02D4114
    • F02D41/1401F02D41/1454F02D41/16F02D2041/1415F02D2041/1422F02D2041/1433
    • Calculation of a present air-fuel ratio correction coefficient correction value &Dgr;FAF (i) is based on a control parameter calculated by an ECU, a change in air-fuel ratio detected by an air-fuel ratio sensor, a deviation of an actual air-fuel ratio from a target air-fuel ratio and an immediately preceding air-fuel ratio correction coefficient correction value &Dgr;FAF (i−1) Then, a present air-fuel ratio correction coefficient FAF (i) is found by adding the present air-fuel ratio correction coefficient correction value &Dgr;FAF (i) to an immediately preceding air-fuel ratio correction coefficient FAF (i−1). As a result, the air-fuel ratio correction coefficients is not be thrown into confusion and no phenomenon of the air-fuel ratio being thrown into confusion occurs even if the control parameter is changed in accordance with operating conditions of the engine.
    • 目前的空燃比校正系数校正值ΔFAF(i)的计算基于由ECU计算的控制参数,由空燃比传感器检测的空燃比的变化,实际空燃比校正系数校正值的偏差, 从目标空燃比和前一个空燃比校正系数校正值ΔFAF(i-1)得到的燃料比,然后,通过将现有的空气燃料添加到现有的空燃比校正系数FAF(i) 比率校正系数校正值DeltaFAF(i)与前一个空燃比校正系数FAF(i-1)。 结果,空燃比校正系数不会被混淆,即使控制参数根据发动机的运行条件而变化,也不会发生空燃比的混乱现象。
    • 9. 发明授权
    • Control apparatus for internal combustion engine
    • 内燃机控制装置
    • US5479897A
    • 1996-01-02
    • US293243
    • 1994-08-19
    • Katsuhiko KawaiHisayo DoutaHiroshi Ikeda
    • Katsuhiko KawaiHisayo DoutaHiroshi Ikeda
    • F02D41/16F02B75/02F02D31/00F02D41/14G05B13/02F02M3/00
    • F02D41/1401F02D31/005F02B2075/027F02D2011/102F02D2041/1409F02D2041/1415F02D2041/1423F02D2041/1433
    • In order to optimally suppress effects of error exerted upon control results by any modeling error which may arise from load fluctuations or the like of the internal combustion engine approximated as a dynamic model under an advanced control theory, present and past values of an operating quantity and control quantity which correspond respectively to a control input and control output of an internal combustion engine are utilized as state variable quantities representing the internal state of the dynamic model of an internal combustion engine. Furthermore, the target value and difference are accumulated for the foregoing control quantity. Modeling of the internal combustion engine is performed in realtime, and optimal feedback gain is calculated periodically or under certain specified conditions for a regulator constructed on the basis of these model constants calculated in realtime. The operating quantity for the internal combustion engine is determined on the basis of this calculated optimal feedback gain, the foregoing state variable quantities, and the foregoing accumulated difference value.
    • 为了最佳地抑制由先进控制理论近似为动态模型的内燃机的负载波动等可能引起的任何建模误差对控制结果产生的误差的影响,工作量的现值和过去值以及 将分别对应于内燃机的控制输入和控制输出的控制量用作表示内燃机的动态模型的内部状态的状态变量。 此外,对于上述控制量,累积目标值和差。 内燃机的建模是实时执行的,并且对于根据实时计算的这些模型常数构建的调节器,在周期性或某些特定条件下计算最佳反馈增益。 基于该计算的最佳反馈增益,前述状态可变量和上述累积差值来确定内燃机的运行量。
    • 10. 发明授权
    • Air-fuel ratio control system for internal combustion engine
    • 内燃机空燃比控制系统
    • US5390489A
    • 1995-02-21
    • US134814
    • 1993-10-12
    • Katsuhiko KawaiHisayo Douta
    • Katsuhiko KawaiHisayo Douta
    • F02D41/14F01N3/20
    • F02D41/1441F02D41/1401F02D41/1481F02D2041/1409F02D2041/1415F02D2041/1418F02D2041/1431F02D2041/1433
    • An air-fuel ratio control system for an internal combustion engine uses a dynamic model which is set as an approximation to a controlled object. The controlled object covers an operation sequence from a fuel injection valve to an air-fuel ratio sensor which is provided downstream of a catalytic converter for detecting an actual air-fuel ratio based on the exhaust gas downstream of the catalytic converter. The system derives a fuel injection amount to be fed to the engine by performing a state-feedback control in such a manner as to control the actual air-fuel ratio to a target air-fuel ratio. The system performs the state-feedback control using, as state variables, current and past input and output data relative to the dynamic model. Accordingly, the actual air-fuel ratio monitored on the downstream-side of the catalytic converter is controlled to the target air-fuel ratio without delay by directly deriving the fuel injection amount using the state-feedback control.
    • 用于内燃机的空燃比控制系统使用被设置为对受控对象的近似的动态模型。 受控对象覆盖从燃料喷射阀到空燃比传感器的操作顺序,其设置在催化转化器的下游,用于基于催化转化器下游的排气来检测实际空燃比。 该系统通过以将实际空燃比控制为目标空燃比的方式进行状态反馈控制,得到供给到发动机的燃料喷射量。 系统执行状态反馈控制,使用作为状态变量的当前和过去的输入和输出数据相对于动态模型。 因此,通过使用状态反馈控制直接导出燃料喷射量,将催化转化器的下游侧监视的实际空燃比无延迟地控制在目标空燃比。