会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Fabrication method of a dual-gate CMOSFET
    • 双栅极CMOSFET的制造方法
    • US06413810B1
    • 2002-07-02
    • US09524268
    • 2000-03-13
    • Hideaki Matsuhashi
    • Hideaki Matsuhashi
    • H01L218238
    • H01L21/823842H01L21/823814H01L21/823864
    • A fabrication method for fabricating a dual-gate CMOSFET on a semiconductor substrate according to the present invention includes: implanting ions of N-type impurity for forming a deep junction source and drain in a first region on the semiconductor substrate where an NMOSFET is to be formed; performing a first annealing process for activating the N-type impurity; implanting ions of P-type impurity for forming a deep junction source and drain in a second region on the semiconductor substrate where a PMOSFET is to be formed; and performing a second annealing process for activating the P-type impurity. By performing the above processes in that order, the N-type impurity ions in the N+ polysilicon gate electrode of the NMOSFET are sufficiently activated, thus preventing the problem of depletion. Also, fluctuation of a threshold voltage because of penetration of the P-type impurity ions in the gate electrode of the PMOSFET can be prevented in the PMOSFET.
    • 根据本发明的用于在半导体衬底上制造双栅极CMOSFET的制造方法包括:在半导体衬底上注入用于形成深接合源和漏极的N型杂质的离子在半导体衬底上的第一区域中,其中NMOSFET将 形成 执行用于激活N型杂质的第一退火工艺; 在要形成PMOSFET的半导体衬底上的第二区域中注入P型杂质的离子以形成深结源和漏极; 并进行用于激活P型杂质的第二退火处理。 通过以上的顺序进行上述处理,NMOSFET的N +多晶硅栅电极中的N型杂质离子被充分地激活,从而防止了耗尽的问题。 此外,PMOSFET中也可以防止由于P型杂质离子在PMOSFET的栅电极中的穿透引起的阈值电压的波动。
    • 5. 发明授权
    • MOSFET fabrication method
    • MOSFET制造方法
    • US06727147B2
    • 2004-04-27
    • US10164609
    • 2002-06-10
    • Toshiyuki NakamuraHideaki Matsuhashi
    • Toshiyuki NakamuraHideaki Matsuhashi
    • H01L218236
    • H01L27/1203H01L21/26506H01L21/76281H01L21/84
    • An FET is fabricated on an SOI substrate by the following processes. Openings are formed in laminated layers of a pad oxide film of about 5-10 nm and an oxidation-resistant nitride film of about 50-150 nm at positions where device isolation regions are to be provided. The substrate is irradiated by an ion implantation apparatus with at least one of Ar ions and Si ions with an implantation energy of 40-50 keV, and a dose of 1×1014 to 5×1015 cm−2. Field oxidation is then conducted to electrically separate adjacent devices. The regions of the substrate where the openings are formed become amorphous when irradiated, and the field oxidation is consequently enhanced. Hence, a thermal oxidation film having sufficient thickness can be obtained even at device isolation regions having isolation widths of 0.2 &mgr;m or less.
    • 通过以下工艺在SOI衬底上制造FET。 在要设置器件隔离区的位置处,在约5-10nm的衬垫氧化膜的层压层和约50-150nm的耐氧化氮化物膜上形成开口。 用离子注入装置用Ar离子和Si离子中的至少一种照射衬底,注入能量为40-50keV,剂量为1×10 14至5×10 15 cm -2。 然后进行场氧化以电隔离相邻的装置。 形成开口部的基板的区域在照射时成为非晶态,因此能够提高场氧化。 因此,即使在隔离宽度为0.2μm以下的器件分离区域,也可以获得具有足够厚度的热氧化膜。
    • 7. 发明申请
    • Field effect transistor and semiconductor device
    • 场效应晶体管和半导体器件
    • US20070018277A1
    • 2007-01-25
    • US11474395
    • 2006-06-26
    • Hideaki Matsuhashi
    • Hideaki Matsuhashi
    • H01L29/00
    • H01L29/78657
    • Channel forming sections that are respectively p types and have hexahedral structures are provided in a silicon epitaxial layer of an SOS substrate. Gate oxide films and a gate electrode are provided at both side surfaces of the channel forming sections. Thus, channels can be formed along both side surfaces of the channel forming sections. In the SOS substrate, compressive stress lying in the direction parallel to the surface of the silicon epitaxial layer is produced in the silicon epitaxial layer upon its manufacture. Therefore, when the channels are formed along the upper surfaces of the channel forming sections, the mobility of electrons is reduced. On the other hand, since tensile stress occurs in the direction normal to the surface of the silicon epitaxial layer, the mobility of electrons can be made high by forming channels along the side surfaces of the channel forming sections, so that the mobility of electrons can be set high and an on-current can be increased.
    • 分别为p型并具有六面体结构的沟道形成部分设置在SOS衬底的硅外延层中。 栅极氧化物膜和栅电极设置在沟道形成部的两侧面。 因此,可以在通道形成部分的两个侧表面上形成通道。 在SOS衬底中,在硅外延层制造时,在平行于硅外延层的表面的方向上产生压缩应力。 因此,当沿通道形成部分的上表面形成通道时,电子的迁移率降低。 另一方面,由于拉伸应力在与硅外延层的表面垂直的方向上发生,所以通过沿着沟道形成部的侧面形成沟道,可以使电子的迁移率变高,使得电子的迁移率 设置高,可以增加导通电流。