会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Test structure to determine the effect of LDD length upon transistor
performance
    • 测试结构,以确定LDD长度对晶体管性能的影响
    • US6121631A
    • 2000-09-19
    • US267444
    • 1999-03-12
    • Mark I GardnerFred N. HauseH. Jim Fulford, Jr.
    • Mark I GardnerFred N. HauseH. Jim Fulford, Jr.
    • H01L21/336H01L23/544H01L29/78H01L23/58H01L27/088H01L31/119
    • H01L29/6659H01L22/34H01L29/6656H01L29/7833H01L2924/0002Y10S257/90
    • The present invention advantageously provides a method for forming a test structure for determining how LDD length of a transistor affects transistor characteristics. In one embodiment, a first polysilicon gate conductor is provided which is laterally spaced from a second polysilicon gate conductor. The gate conductors are each disposed upon a gate oxide lying above a silicon-based substrate. An LDD implant is forwarded into exposed regions of the substrate to form LDD areas within the substrate adjacent to the gate conductors. A first spacer material is then formed upon sidewall surfaces of both gate conductors to a first pre-defined thickness. Source/drain regions are formed exclusively within the substrate a spaced distance from the first gate conductor, the spaced distance being dictated by the first pre-defined thickness. A second spacer material is formed laterally adjacent to the first spacer material to a second pre-defined distance. Source/drain regions are then formed within the substrate a spaced distance from the second gate conductor, the spaced distance being dictated by the second predefined thickness. The resulting transistors have a mutual source/drain region between them. More transistors may also be fabricated in a similar manner.
    • 本发明有利地提供了一种用于形成用于确定晶体管的LDD长度如何影响晶体管特性的测试结构的方法。 在一个实施例中,提供了与第二多晶硅栅极导体横向间隔开的第一多晶硅栅极导体。 栅极导体各自设置在位于硅基衬底之上的栅极氧化物上。 将LDD植入物转移到衬底的暴露区域中,以在邻近栅极导体的衬底内形成LDD区域。 然后将第一间隔物材料形成在两个栅极导体的侧壁表面上至第一预定义的厚度。 源极/漏极区域仅在衬底内形成与第一栅极导体间隔开的距离,间隔距离由第一预定义厚度决定。 第二间隔物材料横向地邻近第一间隔物材料形成为第二预定距离。 源极/漏极区域然后在衬底内形成与第二栅极导体间隔开的距离,间隔距离由第二预定厚度决定。 所得的晶体管在它们之间具有相互的源极/漏极区域。 也可以以类似的方式制造更多的晶体管。
    • 2. 发明授权
    • Poly recessed fabrication method for defining high performance MOSFETS
    • 用于定义高性能MOSFET的多凹陷制造方法
    • US5970354A
    • 1999-10-19
    • US987117
    • 1997-12-08
    • Fred N. HauseMark I. GardnerH. Jim Fulford, Jr.
    • Fred N. HauseMark I. GardnerH. Jim Fulford, Jr.
    • H01L21/28H01L21/336
    • H01L29/66583H01L21/28123
    • A method for forming a gate conductor by using a masking layer above a polysilicon layer to define the length of a gate is presented. The length of the gate may be adjusted by the use of spacers. The method includes forming a plurality of layers including a dielectric layer, a polysilicon layer and a masking layer. An opening is preferably formed in the masking layer, the opening defining the location of the gate conductor. The width of the opening may be narrowed by the use of spacers. A portion of the polysilicon layer defined by the opening is implanted with an n-type impurity. An oxide layer is formed over the implanted portion of the polysilicon layer. The polysilicon layer is etched such that a gate conductor is formed underneath the oxide layer. LDD areas and source/drain areas are subsequently formed adjacent to the gate conductor.
    • 提出了一种通过使用多晶硅层上面的掩模层来形成栅极导体的方法,以限定栅极的长度。 栅极的长度可以通过使用间隔物来调节。 该方法包括形成包括电介质层,多晶硅层和掩模层的多个层。 优选地,在掩模层中形成开口,该开口限定栅极导体的位置。 开口的宽度可以通过使用间隔物变窄。 由开口限定的多晶硅层的一部分注入n型杂质。 在多晶硅层的注入部分上形成氧化物层。 蚀刻多晶硅层,使得在氧化物层下方形成栅极导体。 随后在栅极导体附近形成LDD区域和源极/漏极区域。
    • 3. 发明授权
    • Stacked mask integration technique for advanced CMOS transistor formation
    • 叠层掩模集成技术,用于先进的CMOS晶体管形成
    • US5946579A
    • 1999-08-31
    • US987277
    • 1997-12-09
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • H01L21/28H01L21/3213H01L21/336
    • H01L29/66583H01L21/28052H01L21/28123H01L21/32137
    • A method for forming a gate conductor by using a masking layer above a polysilicon layer to define the length of a gate is presented. The length of the gate may be adjusted by the use of spacers. The method includes forming a plurality of layers including a dielectric layer, a polysilicon layer and a masking layer. An opening is preferably formed in the masking layer, the opening defining the location of the gate conductor. The width of the opening may be narrowed by the use of spacers. A portion of the polysilicon layer defined by the opening is implanted with an n-type impurity. A silicide layer is formed upon the upper surface of the exposed polysilicon layer. An oxide layer is formed over the silicide layer. The polysilicon layer is etched such that a gate conductor is formed underneath the oxide layer. LDD areas and source/drain areas are subsequently formed adjacent to the gate conductor.
    • 提出了一种通过使用多晶硅层上面的掩模层来形成栅极导体的方法,以限定栅极的长度。 栅极的长度可以通过使用间隔物来调节。 该方法包括形成包括电介质层,多晶硅层和掩模层的多个层。 优选地,在掩模层中形成开口,该开口限定栅极导体的位置。 开口的宽度可以通过使用间隔物变窄。 由开口限定的多晶硅层的一部分注入n型杂质。 在暴露的多晶硅层的上表面上形成硅化物层。 在硅化物层上形成氧化物层。 蚀刻多晶硅层,使得在氧化物层下方形成栅极导体。 随后在栅极导体附近形成LDD区域和源极/漏极区域。
    • 4. 发明授权
    • Test structure responsive to electrical signals for determining
lithographic misalignment of vias relative to electrically active
elements
    • 响应于电信号的测试结构,用于确定通孔相对于电活性元件的光刻不对准
    • US6072192A
    • 2000-06-06
    • US252365
    • 1999-02-18
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • H. Jim Fulford, Jr.Mark I. GardnerFred N. Hause
    • G01R31/28G03F7/20H01L23/58H01L23/544
    • G03F7/70633G01R31/2805G03F7/70658G01R31/2813
    • The present invention advantageously provides a method for determining lithographic misalignment of a via relative to an electrically active area. An electrically measured test structure is provided which is designed to have targeted via areas shifted from the midline(s) of a targeted active area(s). Further, the test structure is designed to have a test pad(s) that electrically communicates with the targeted active area(s). Design specifications of the test structure require the targeted via areas to be offset from the midline(s) of the active area(s) by varying distances. The above-mentioned method involves processing the designed test structure. An electrical signal may then be applied to conductors coupled to each of the vias while it is also being applied to the test pad. The resulting electrical response should be proportional to the distance that a via is misaligned from its desired location. Using the electrical responses for all the vias, it is possible to determine the direction and amount of misalignment.
    • 本发明有利地提供了一种用于确定通孔相对于电活动区域的光刻未对准的方法。 提供电测量的测试结构,其被设计成具有从目标有源区域的中线偏移的目标通孔区域。 此外,测试结构被设计成具有与目标有源区域电连通的测试焊盘。 测试结构的设计规范要求目标通孔区域通过变化的距离偏离有效区域的中线。 上述方法涉及处理设计的测试结构。 然后可以将电信号施加到耦合到每个通孔的导体,同时它也被施加到测试垫。 所产生的电响应应与通孔与其所需位置不对准的距离成正比。 使用所有通孔的电响应,可以确定未对准的方向和量。
    • 5. 发明授权
    • Method of reducing transistor channel length with oxidation inhibiting
spacers
    • 用氧化抑制间隔物减少晶体管沟道长度的方法
    • US5918134A
    • 1999-06-29
    • US666922
    • 1996-06-19
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • H01L21/336H01L29/78H01L21/266
    • H01L29/66583H01L29/66492H01L29/66613H01L29/7834H01L29/7836
    • A method of fabricating a transistor. A dielectric layer is formed on an upper surface of a semiconductor substrate. A photoresist layer is then deposited on a dielectric layer and patterned with a photolithography exposure device to expose a region of the dielectric layer having a lateral dimension approximately equal to the minimum feature size resolvable by the photolithography exposure device. The exposed region of the dielectric layer is then removed to form a trench in the dielectric layer having opposed dielectric sidewalls and to expose a channel region of the semiconductor substrate having a lateral dimension approximately equal to the minimum feature size. First and second spacer structures are then formed on the respective dielectric sidewalls. The spacer structures shadow peripheral portions of the exposed channel region. A channel dielectric is then formed between the first and second spacer structures. An outer surface of the spacer structure is then removed to expose peripheral portions of the channel region. A first concentration of a first impurity is then introduced into the peripheral portions of the semiconductor substrate and the channel dielectric is thereafter removed. A gate dielectric is then formed on the semiconductor substrate and a conductive gate structure, such as polysilicon, is formed over the gate dielectric.
    • 一种制造晶体管的方法。 在半导体衬底的上表面上形成介电层。 然后将光致抗蚀剂层沉积在电介质层上并用光刻曝光装置进行图案化,以暴露电介质层的区域,该区域的横向尺寸近似等于由光刻曝光装置可分辨的最小特征尺寸。 然后去除电介质层的暴露区域,以在具有相对的电介质侧壁的电介质层中形成沟槽,并暴露半导体衬底的沟道区域,其横向尺寸近似等于最小特征尺寸。 然后在相应的电介质侧壁上形成第一和第二间隔物结构。 间隔结构遮挡了暴露的通道区域的外围部分。 然后在第一和第二间隔结构之间形成沟道电介质。 然后移除间隔结构的外表面以暴露通道区域的外围部分。 然后将第一杂质的第一浓度引入半导体衬底的周边部分,然后除去沟道电介质。 然后在半导体衬底上形成栅极电介质,并且在栅极电介质上形成诸如多晶硅的导电栅极结构。
    • 6. 发明授权
    • MOS transistor employing a removable, dual layer etch stop to protect
implant regions from sidewall spacer overetch
    • MOS晶体管采用可移除的双层蚀刻停止件,以保护植入区域免受侧壁间隔物过蚀刻
    • US5895955A
    • 1999-04-20
    • US781451
    • 1997-01-10
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • Mark I. GardnerFred N. HauseH. Jim Fulford, Jr.
    • H01L21/336H01L29/78H01L29/72
    • H01L29/6659H01L29/7833H01L29/665
    • A transistor and transistor fabrication method are presented where a sequence of layers are formed and either entirely or partially removed upon sidewall surfaces of a gate conductor. The formation and removal of layers produces a series of laterally spaced surfaces to which various implants can be aligned. Those implants, placed in succession produce a highly graded junction having a relatively smooth doping profile. The multilayer spacer structure comprises a polysilicon spacer interposed between a grown oxide and an etch stop. The polysilicon spacer is formed by an anisotropic etch, and the pre-existing etch stop prevents the anisotropic etch from damaging the source/drain and gate conductor regions beneath the etch stop. Further, the etch stop allows removal of the overlying oxide as well as the entire polysilicon during times when the multi-layer spacer is entirely removed. Removal of the various layers does not damage the underlying substrate due to the presence of the etch stop. The etch stop preferably comprises a nitride layer overlying an oxide layer, wherein the oxide layer can either be deposited or grown.
    • 提出了一种晶体管和晶体管制造方法,其中形成一系列层,并且在栅极导体的侧壁表面上完全或部分地去除层。 层的形成和去除产生一系列横向间隔开的表面,各种植入物可以对齐。 连续放置的那些植入物产生具有相对平滑的掺杂分布的高度梯度的结。 多层间隔结构包括插入生长的氧化物和蚀刻停止层之间的多晶硅间隔物。 通过各向异性蚀刻形成多晶硅间隔物,并且预先存在的蚀刻停止物防止各向异性蚀刻损坏蚀刻停止点下面的源极/漏极和栅极导体区域。 此外,在完全去除多层间隔物的时间期间,蚀刻停止允许去除上覆氧化物以及整个多晶硅。 由于存在蚀刻停止,各层的去除不会损坏下面的衬底。 蚀刻停止件优选地包括覆盖氧化物层的氮化物层,其中氧化物层可以沉积或生长。
    • 8. 发明授权
    • Method of making a high density interconnect formation
    • 制造高密度互连结构的方法
    • US6117760A
    • 2000-09-12
    • US968682
    • 1997-11-12
    • Mark I. GardnerH. Jim Fulford, Jr.Fred N. Hause
    • Mark I. GardnerH. Jim Fulford, Jr.Fred N. Hause
    • H01L21/768H01L23/528H01L21/4763
    • H01L21/76885H01L21/76838H01L23/5283H01L2924/0002
    • A technique is provided for forming interconnects laterally spaced from each other across a semiconductor topography by a deposited dielectric spacer layer. The lateral distance between each interconnect is advantageously dictated by the thickness of the spacer layer rather than by the minimum feature size of a lithographically patterned masking layer. In an embodiment, a first and second conductive interconnects are formed a spaced distance apart upon a semiconductor topography. The first and second interconnects are defined using optical lithography and an etch technique. A dielectric layer is CVD deposited across the exposed surfaces of the first and second interconnects and of the semiconductor topography. The CVD deposition conditions are controlled so as to form a relatively thin spacers laterally adjacent the sidewalls of the interconnects. A conductive material is then deposited across into a trench arranged between the first and second interconnects, and CMP polished such that the upper surface of the conductive material is at an elevational level proximate that of the surfaces of the interconnects. A third interconnect is thereby formed within the trench laterally adjacent the first and second interconnects.
    • 提供了一种技术,用于通过沉积的介电隔离层在半导体形貌上形成横向间隔开的互连。 每个互连之间的横向距离有利地由隔离层的厚度而不是光刻图案化掩模层的最小特征尺寸决定。 在一个实施例中,第一和第二导电互连在半导体形貌上分开形成间隔距离。 第一和第二互连使用光刻和蚀刻技术来定义。 介电层是跨越第一和第二互连的暴露表面和半导体形貌的CVD沉积的。 控制CVD沉积条件以形成横向邻近互连侧壁的较薄的间隔件。 然后将导电材料沉积到布置在第一和第二互连之间的沟槽中,并且CMP抛光,使得导电材料的上表面处于靠近互连表面的上表面。 因此,在沟槽内形成第三互连件,横向地邻近第一和第二互连。