会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Intelligent Pipeline Small Leaks and Thefts Detection Methods and Systems
    • US20180246004A1
    • 2018-08-30
    • US15443658
    • 2017-02-27
    • Yan Zhang
    • Yan Zhang
    • G01M3/24G01M3/28
    • G01M3/243G01M3/2815
    • Four (4) methods and systems that utilize these methods are claimed in the present invention for intelligently detecting pipeline small leaks, thefts, and their details.In the Energy Flow Line Method, the measured flow data at both ends of the pipeline will be monitored and analyzed. If flow changes that meet the criteria are identified, a leak or a theft is detected. The energy wave front speed is introduced and the unsteady flow mathematical model of the subject pipeline is utilized to calculate leak details.In the Filtered Pressure Waves Method, the measured pressure data at both ends of the pipeline will be monitored and analyzed. After filtering, only those pressure waves that are not originated at the ends of the pipeline will be selected as candidates. For each computation step, consecutively apply the 2 travelling time windows template 1 and template 2 to those candidates, and process those candidates within each window. Leaks, thefts and their details (except for leaked amount) can be obtained if the detected leak locations meet the criteria, even when the fluid is stagnant for some time.The Enhanced Filtered Pressure Waves Method, as the name suggests, is the enhanced version of the Filtered Pressure Waves Method if the fluid is not stagnant for some time. The essential part of the Energy Flow Line Method is used to extend the function not only to provide the leaked amount, but also to verify the leak and the leak location in order to avoid sending false alarms. The measured flow data at the outlet end of the pipeline is also monitored and the unsteady flow mathematical model of the subject pipeline is utilized. If the fluid is stagnant for some time, the leaked amount will be calculated without measured data to be compared. The estimated leak location will be provided with a search range.In the Mutual Confirmation Method, essential parts of the above 3 methods are utilized to extend the capability and to confirm each finding. If any result that contradicts the solution is identified, find a new one that fits. By providing the solution that is mutually confirmed with 2 sets of leak details, sending false alarms can be avoided. This method is particularly developed to solve some issues in the real time monitoring applications, especially in SCADA environments, to have shorter calculation time. The unsteady flow mathematical model of the subject pipeline is indispensable for this method. If the fluid is stagnant for some time, the leaked amount will be calculated without measured data to be compared. Also the estimated leak location will be provided with a search range.The present invention is suitable for most pipeline applications, including very long pipelines (for instance, over 200 km), existing pipelines (with min or no modification on existing sensor groups), and pipelines that are shut for some time (excluding using the Energy Flow Line Method), and easily used as a cross checking tool to other pipelines and other online leak detection systems. The fluids in pipelines can be gases, liquids, and multi-phase fluids.
    • 9. 发明申请
    • Fiber Optic Coupler Array
    • 光纤耦合器阵列
    • US20150316723A1
    • 2015-11-05
    • US14104230
    • 2013-12-12
    • Geoff W. TaylorYan Zhang
    • Geoff W. TaylorYan Zhang
    • G02B6/30G02F1/017G02B6/14G02B6/122G02B6/12
    • G02B6/305G02B6/1228G02B6/14G02B6/421G02B6/423G02B6/4249G02B6/4257
    • An assembly includes optical fibers each having a waveguide core, a photonic integrated circuit (IC) that includes in-plane waveguides corresponding to the optical fibers, and a substrate bonded to the photonic IC with grooves that support the optical fibers. The substrate and photonic IC can have metal bumps that cooperate to provide mechanical bonding and electrical connections between the substrate and photonic IC. Portions of the optical fibers supported by the substrate grooves can define flat surfaces spaced from the optical fiber cores. The photonic IC can include passive waveguide structures with a first coupling section that interfaces to the flat surface of a corresponding optical fiber (for evanescent coupling of optical signals) and a second coupling section that interfaces to a corresponding in-plane waveguide (for adiabatic spot-size conversion of optical signals).
    • 一种组件包括各自具有波导芯的光纤,包括对应于光纤的面内波导的光子集成电路(IC)以及与支撑光纤的凹槽连接到光子IC的基板。 衬底和光子IC可以具有金属凸块,其配合以在衬底和光子IC之间提供机械结合和电连接。 由基板槽支撑的光纤的一部分可以限定与光纤芯间隔开的平坦表面。 光子IC可以包括无源波导结构,其具有与对应光纤的平坦表面(用于光信号的渐逝耦合)相接合的第一耦合部分和与对应的平面波导(用于绝热光点)相连接的第二耦合部分 光信号的尺寸转换)。
    • 10. 发明授权
    • System and method for transmission control protocol slow-start
    • 传输控制协议的启动系统和方法
    • US09178789B2
    • 2015-11-03
    • US13340354
    • 2011-12-29
    • Yan ZhangNirwan AnsariMingquan WuHong Heather Yu
    • Yan ZhangNirwan AnsariMingquan WuHong Heather Yu
    • G01R31/08H04L12/26H04L12/807H04L12/801H04L12/841
    • H04L43/0882H04L43/16H04L47/193H04L47/27H04L47/283H04L47/29
    • An embodiment of a system and method that uses inline measurements to probe available bandwidth for a transmission control protocol, and adaptively sets a slow-start threshold according to the available bandwidth. The method includes initializing a congestion window “cwnd,” sending cwnd packets, estimating an available bandwidth for the cwnd packets. The congestion window cwnd is set to a higher number, and the higher number of further packets is sent if the available bandwidth is greater than a first threshold level. The available bandwidth is re-estimated for the higher number of the further packets, and a soft start threshold “ssthresh” is set to the re-estimated available bandwidth. A statistical measure is calculated for the re-estimated available bandwidth, and the congestion window cwnd is set equal to ssthresh if a ratio of the statistical measure to the re-estimated available bandwidth is less than a second threshold level.
    • 使用在线测量来探测传输控制协议的可用带宽的系统和方法的实施例,并且根据可用带宽自适应地设置慢启动阈值。 该方法包括初始化拥塞窗口“cwnd”,发送cwnd数据包,估计cwnd数据包的可用带宽。 拥塞窗口cwnd被设置为更高的数量,并且如果可用带宽大于第一阈值水平,则发送更多数量的另外的分组。 对于更多数量的另外的分组重新估计可用带宽,并且将软启动阈值“ssthresh”设置为重新估计的可用带宽。 对于重新估计的可用带宽计算统计度量,并且如果统计度量与重新估计的可用带宽的比率小于第二阈值水平,则将拥塞窗口cwnd设置为等于ssthresh。