会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Parallel processing system and method using surrogate instructions
    • 并行处理系统和使用代理指令的方法
    • US5649135A
    • 1997-07-15
    • US373128
    • 1995-01-17
    • Gerald G. PechanekClair John GlossnerLarry D. LarsenStamatis Vassiliadis
    • Gerald G. PechanekClair John GlossnerLarry D. LarsenStamatis Vassiliadis
    • G06F9/318G06F9/38G06F15/16G06F15/80G06F9/355
    • G06F9/3885G06F17/142G06F9/30072G06F9/30181
    • A parallel processing system and method is disclosed, which provides an improved instruction distribution mechanism for a parallel processing array. The invention broadcasts a basic instruction to each of a plurality of processor elements. Each processor element decodes the same instruction by combining it with a unique offset value stored in each respective processor element, to produce a derived instruction that is unique to the processor element. A first type of basic instruction results in the processor element performing a logical or control operation. A second type of basic instruction results in the generation of a pointer address. The pointer address has a unique address value because it results from combining the basic instruction with the unique offset value stored at the processor element. The pointer address is used to access an alternative instruction from an alternative instruction storage, for execution in the processor element. The alternative instruction is a very long instruction word, whose length is, for example, an integral multiple of the length of the basic instruction and contains much more information than can be represented by the basic instruction. A very long instruction word such as this is useful for providing parallel control of a plurality of primitive execution units that reside within the processor element. In this manner, a high degree of flexibility and versatility is attained in the operation of processor elements of a parallel processing array.
    • 公开了一种并行处理系统和方法,其提供了用于并行处理阵列的改进的指令分配机制。 本发明向多个处理器元件中的每一个广播基本指令。 每个处理器元件通过将其与存储在每个相应处理器元件中的唯一偏移值组合来解码相同的指令,以产生对于处理器元件唯一的导出指令。 第一类基本指令导致处理器元件执行逻辑或控制操作。 第二种类型的基本指令导致生成指针地址。 指针地址具有唯一的地址值,因为它是将基本指令与存储在处理器元件中的唯一偏移值组合而产生的。 指针地址用于从替代指令存储器访问替代指令,以在处理器元件中执行。 替代指令是非常长的指令字,其长度例如是基本指令的长度的整数倍,并且包含比基本指令可以表示的更多的信息。 诸如此类的非常长的指令字对于提供驻留在处理器元件内的多个基本执行单元的并行控制是有用的。 以这种方式,在并行处理阵列的处理器元件的操作中获得高度的灵活性和多功能性。
    • 2. 发明授权
    • Array processor communication architecture with broadcast processor
instructions
    • 具有广播处理器指令的阵列处理器通信架构
    • US5659785A
    • 1997-08-19
    • US386384
    • 1995-02-10
    • Gerald G. PechanekLarry D. LarsenClair John GlossnerStamatis Vassiliaadis
    • Gerald G. PechanekLarry D. LarsenClair John GlossnerStamatis Vassiliaadis
    • G06F15/16G06F15/173G06F15/177G06F15/80
    • G06F15/17381
    • A plurality of processor elements (PEs) are connected in a duster by a common instruction bus to a sequencing control unit with its associated instruction memory. Each PE has data buses connected to at least its four nearest PE neighbors, referred to as its North, South, East and West PE neighbors. Each PE also has a general purpose register file containing several operand registers. A common instruction is fetched from the instruction memory by the sequencing control unit and broadcast over the instruction bus to each PE in the cluster. The instruction includes an upcode value that controls the arithmetic or logical operation performed by an execution unit in the PE on one or more operands in the register file. A switch is included in each PE to interconnect it with a first PE neighbor as the destination to which the result from the execution unit is sent. The broadcast instruction includes a destination field that controls the switch in the PE, to dynamically select the destination neighbor PE to which the result is sent. Further, the broadcast instruction includes a target field that controls the switch in the PE, to dynamically select the operand register in the register file of the PE, to which another result received from another neighbor PE in the cluster is stored. In this manner, the instruction broadcast to all the PEs in the cluster, dynamically controls the communication of operands and results between the PEs in the cluster, in a single instruction, multiple data processor array.
    • 多个处理器元件(PE)通过公共指令总线连接到除尘器中,其具有与其相关联的指令存储器的排序控制单元。 每个PE都有数据总线连接到至少其四个最近的PE邻居,称为其北,南,东和西PE邻居。 每个PE还有一个包含多个操作数寄存器的通用寄存器文件。 通过排序控制单元从指令存储器取出通用指令,并通过指令总线广播到集群中的每个PE。 该指令包括一个上限值,其控制由PE中的执行单元在寄存器文件中的一个或多个操作数上执行的算术或逻辑操作。 每个PE中包括一个交换机,将其与第一个PE邻居进行互连,作为发送执行单元的结果的目的地。 广播指令包括控制PE中的交换机的目的地字段,动态地选择发送结果的目的地邻居PE。 此外,广播指令包括控制PE中的交换机的目标字段,动态地选择PE的寄存器文件中的操作数寄存器,存储从群集中的另一个邻居PE接收到的另一结果。 以这种方式,向集群中的所有PE广播的指令在单个指令,多数据处理器阵列中动态地控制集群中的PE之间的操作数和结果的通信。
    • 8. 发明授权
    • Learning machine synapse processor system apparatus
    • 学习机突触处理器系统设备
    • US5613044A
    • 1997-03-18
    • US459199
    • 1995-06-02
    • Gerald G. PechanekStamatis VassiliadisJose G. Delgado-Frias
    • Gerald G. PechanekStamatis VassiliadisJose G. Delgado-Frias
    • G06F15/18
    • G06N3/063
    • A Neural synapse processor apparatus having a neuron architecture for the synapse processing elements of the apparatus. The apparatus which we prefer will have a N neuron structure having synapse processing units that contain instruction and data storage units, receive instructions and data, and execute instructions. The N neuron structure should contain communicating adder trees, neuron activation function units, and an arrangement for communicating both instructions, data, and the outputs of neuron activation function units back to the input synapse processing units by means of the communicating adder trees. The apparatus can be structured as a bit-serial or word parallel system. The preferred structure contains N.sup.2 synapse processing units, each associated with a connection weight in the N neural network to be emulated, placed in the form of a N by N matrix that has been folded along the diagonal and made up of diagonal cells and general cells. Diagonal cells, each utilizing a single synapse processing unit, are associated with the diagonal connection weights of the folded N by N connection weight matrix and general cells, each of which has two synapse processing units merged together, and which are associated with the symmetric connection weights of the folded N by N connection weight matrix. The back-propagation learning algorithm is first discussed followed by a presentation of the learning machine synapse processor architecture. An example implementation of the back-propagation learning algorithm is then presented. This is followed by a Boltzmann like machine example and data parallel examples mapped onto the architecture.
    • 一种具有用于装置的突触处理元件的神经元结构的神经突触处理器装置。 我们喜欢的装置将具有具有包含指令和数据存储单元,接收指令和数据以及执行指令的突触处理单元的N个神经元结构。 N神经元结构应包含通信加法器树,神经激活功能单元和用于通过通信加法器树将神经元激活功能单元的指令,数据和输出传送回输入突触处理单元的布置。 该装置可以被构造为比特串行或字并行系统。 优选结构包含N 2个突触处理单元,每个N突触处理单元与N个仿真网络中的连接权重相关联,以N×N矩阵的形式放置,该矩阵已经沿对角线折叠并由对角线单元和通用单元组成 。 每个使用单个突触处理单元的对角线单元与折叠的N乘N连接权重矩阵和通用单元的对角连接权重相关联,每个单元具有合并在一起的两个突触处理单元,并且与对称连接相关联 折叠N乘以N连接权重矩阵的权重。 首先讨论反向传播学习算法,然后介绍学习机器突触处理器架构。 然后呈现反向传播学习算法的示例实现。 接下来是一个Boltzmann的机器示例,并将数据并行示例映射到架构上。
    • 9. 发明授权
    • Learning machine synapse processor system apparatus
    • 学习机突触处理器系统设备
    • US5517596A
    • 1996-05-14
    • US161839
    • 1993-12-01
    • Gerald G. PechanekStamatis VassiliadisJose G. Delgado-Frias
    • Gerald G. PechanekStamatis VassiliadisJose G. Delgado-Frias
    • G06F15/18
    • G06N3/063
    • A Neural synapse processor apparatus having a neuron architecture for the synapse processing elements of the apparatus. The apparatus which we prefer will have a N neuron structure having synapse processing units that contain instruction and data storage units, receive instructions and data, and execute instructions. The N neuron structure should contain communicating adder trees, neuron activation function units, and an arrangement for communicating both instructions, data, and the outputs of neuron activation function units back to the input synapse processing units by means of the communicating adder trees. The apparatus can be structured as a bit-serial or word parallel system. The preferred structure contains N.sup.2 synapse processing units, each associated with a connection weight in the N neural network to be emulated, placed in the form of a N by N matrix that has been folded along the diagonal and made up of diagonal cells and general cells. Diagonal cells, each utilizing a single synapse processing unit, are associated with the diagonal connection weights of the folded N by N connection weight matrix and general cells, each of which has two synapse processing units merged together, and which are associated with the symmetric connection weights of the folded N by N connection weight matrix. The back-propagation learning algorithm is first discussed followed by a presentation of the learning machine synapse processor architecture. An example implementation of the back-propagation learning algorithm is then presented. This is followed by a Boltzmann like machine example and data parallel examples mapped onto the architecture.
    • 一种具有用于装置的突触处理元件的神经元结构的神经突触处理器装置。 我们喜欢的装置将具有具有包含指令和数据存储单元,接收指令和数据以及执行指令的突触处理单元的N个神经元结构。 N神经元结构应包含通信加法器树,神经激活功能单元和用于通过通信加法器树将神经元激活功能单元的指令,数据和输出传送回输入突触处理单元的布置。 该装置可以被构造为比特串行或字并行系统。 优选结构包含N 2个突触处理单元,每个N突触处理单元与N个仿真网络中的连接权重相关联,以N×N矩阵的形式放置,该矩阵已经沿对角线折叠并由对角线单元和通用单元组成 。 每个使用单个突触处理单元的对角线单元与折叠的N乘N连接权重矩阵和通用单元的对角连接权重相关联,每个单元具有合并在一起的两个突触处理单元,并且与对称连接相关联 折叠N乘以N连接权重矩阵的权重。 首先讨论反向传播学习算法,然后介绍学习机器突触处理器架构。 然后呈现反向传播学习算法的示例实现。 接下来是一个Boltzmann的机器示例,并将数据并行示例映射到架构上。