会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of making N-channel and P-channel IGFETs using selective doping
and activation for the N-channel gate
    • 使用N沟道栅极的选择性掺杂和激活来制造N沟道和P沟道IGFET的方法
    • US6051459A
    • 2000-04-18
    • US803730
    • 1997-02-21
    • Mark I. GardnerDaniel KadoshFrederick N. HauseDerick J. Wristers
    • Mark I. GardnerDaniel KadoshFrederick N. HauseDerick J. Wristers
    • H01L21/8238
    • H01L21/823842
    • A method of making N-channel and P-channel IGFETs is disclosed. The method includes providing a semiconductor substrate with N-type and P-type active regions, forming a gate material over the N-type and P-type active regions, forming a first masking layer over the gate material, wherein the first masking layer includes an opening above a first portion of the gate material over the P-type active region, and the first masking layer covers a second portion of the gate material over the N-type active region, introducing an N-type dopant into the first portion of the gate material without introducing the N-type dopant into the second portion of the gate material, applying a thermal cycle to drive-in and activate the N-type dopant in the first portion of the gate material before introducing any doping into the second portion of the gate material, before introducing any source/drain doping into the N-type active region, and before introducing any source/drain doping into the P-type active region, forming a second masking layer over the gate material, wherein the second masking layer covers portions of the first and second portions of the gate material, applying an etch to form first and second gates from unetched portions of the first and second portions of the gate material, respectively, and forming an N-type source and drain in the P-type active region and forming a P-type source and drain in the N-type active region. Advantageously, a dopant in the gate for the N-channel IGFET can be driven-in and activated at a relatively high temperature without subjecting any source/drain doping to this temperature.
    • 公开了制造N沟道和P沟道IGFET的方法。 该方法包括提供具有N型和P型有源区的半导体衬底,在N型和P型有源区上形成栅极材料,在栅极材料上形成第一掩模层,其中第一掩模层包括 在P型有源区上方的栅极材料的第一部分上方的开口,并且第一掩模层覆盖N型有源区上的栅极材料的第二部分,将N型掺杂剂引入到第一部分 栅极材料,而不将N型掺杂剂引入栅极材料的第二部分中,在引入任何掺杂到第二部分之前施加热循环以驱动和激活栅极材料的第一部分中的N型掺杂剂 在向N型有源区域引入任何源极/漏极掺杂之前,在向P型有源区域引入任何源极/漏极掺杂之前,在栅极材料上形成第二掩模层, 在第二掩模层中,分别覆盖栅极材料的第一和第二部分的部分,施加蚀刻以分别从栅极材料的第一和第二部分的未蚀刻部分形成第一和第二栅极,并形成N型源极 并在P型有源区中漏极,并在N型有源区中形成P型源极和漏极。 有利的是,用于N沟道IGFET的栅极中的掺杂剂可以被驱入并在相对较高的温度下被激活,而不会对该温度进行任何源极/漏极掺杂。
    • 4. 发明授权
    • Method for fabricating differential threshold voltage transistor pair
    • 差分阈值电压晶体管对的制造方法
    • US5933721A
    • 1999-08-03
    • US837580
    • 1997-04-21
    • Frederick N. HauseMark I. GardnerDaniel Kadosh
    • Frederick N. HauseMark I. GardnerDaniel Kadosh
    • H01L21/8238H01L21/60
    • H01L21/823828H01L21/823807
    • A method of establishing a differential threshold voltage during the fabrication of first and second IGFETs having like conductivity type is disclosed. A dopant is introduced into the gate electrode of each transistor of the pair. The dopant is differentially diffused into respective channel regions to provide a differential dopant concentration therebetween, which results in a differential threshold voltage between the two transistors. One embodiment includes introducing a diffusion-retarding material, such as nitrogen, into the first gate electrode before the dopant is diffused into the respective channel regions, and without introducing a significant amount of the diffusion-retarding material into the second gate electrode. Advantageously, a single dopant implant can provide both threshold voltage values. The two threshold voltages may be chosen to provide various combinations of enhancement mode and depletion mode IGFETs.
    • 公开了在具有类似导电类型的第一和第二IGFET的制造期间建立差分阈值电压的方法。 将掺杂剂引入该对的每个晶体管的栅电极。 掺杂剂差异扩散到各个沟道区域中以在其间提供差分掺杂剂浓度,这导致两个晶体管之间的差分阈值电压。 一个实施例包括在掺杂剂扩散到各个沟道区域之前将诸如氮的扩散阻滞材料引入第一栅电极中,并且不将大量的扩散阻滞材料引入第二栅电极。 有利地,单个掺杂剂注入可以提供两个阈值电压值。 可以选择两个阈值电压以提供增强模式和耗尽模式IGFET的各种组合。
    • 5. 发明授权
    • Method of forming trench transistor with source contact in trench
    • 在沟槽中形成具有源极接触的沟槽晶体管的方法
    • US5874341A
    • 1999-02-23
    • US739567
    • 1996-10-30
    • Mark I. GardnerDaniel KadoshFrederick N. Hause
    • Mark I. GardnerDaniel KadoshFrederick N. Hause
    • H01L21/28H01L21/336H01L29/78
    • H01L29/66613H01L21/28114H01L29/66621H01L29/66659H01L29/7834
    • An IGFET with a gate electrode and a source contact in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, a source contact on the bottom surface, insulative spacers between the gate electrode, the source contact and the sidewalls, and a source and drain adjacent to the bottom surface. A method of forming an IGFET includes forming a trench with first and second opposing sidewalls and a bottom surface in a substrate, forming disposable spacers on the bottom surface, forming a gate insulator material on the bottom surface between the disposable spacers, depositing a gate electrode material on the gate insulator material and disposable spacers, polishing the gate electrode material and then anisotropically etching a lateral portion of the gate electrode material and gate insulator material to form the gate electrode and gate insulator, removing the disposable spacers, forming a first insulative spacer adjacent to the first sidewall, a second insulative spacer adjacent to the gate electrode and second sidewall, and a third insulative spacer adjacent to the gate electrode such that a contact portion of the bottom surface between the first and third insulative spacers is exposed, forming a source and drain in the substrate and adjacent to the bottom surface, and forming source and drain contacts such that the source contact is electrically coupled to the source at the contact portion of the bottom surface and the drain contact is electrically coupled to the drain at the top surface of the substrate. Advantageously, the source contact overlaps the trench, thereby improving packing density.
    • 公开了具有沟槽中的栅电极和源极接触的IGFET。 IGFET包括具有相对侧壁和半导体衬底中的底表面的沟槽,底表面上的栅极绝缘体,栅极绝缘体上的栅电极,底表面上的源极接触,栅电极,源极之间的绝缘间隔 接触和侧壁,以及与底表面相邻的源极和漏极。 形成IGFET的方法包括在基板中形成具有第一和第二相对侧壁和底表面的沟槽,在底表面上形成一次性间隔物,在一次性间隔物之间​​的底表面上形成栅极绝缘体材料,沉积栅电极 栅极绝缘体材料和一次性间隔物上的材料,抛光栅电极材料,然后各向异性地蚀刻栅极电极材料和栅极绝缘体材料的侧向部分以形成栅电极和栅极绝缘体,去除一次性间隔物,形成第一绝缘间隔物 与第一侧壁相邻的第二绝缘间隔件,与栅电极和第二侧壁相邻的第二绝缘间隔件,以及与栅电极相邻的第三绝缘间隔件,使得第一和第三绝缘间隔件之间的底表面的接触部分露出,形成 源极和漏极在衬底中并且邻近底面,并且形成 尿液和漏极接触,使得源极接触件在底表面的接触部分处电耦合到源极,并且漏极接触件电耦合到衬底顶表面处的漏极。 有利地,源极接触与沟槽重叠,从而改善了堆积密度。
    • 7. 发明授权
    • Method of forming a contact hole in an interlevel dielectric layer using
dual etch stops
    • 使用双蚀刻停止在层间电介质层中形成接触孔的方法
    • US5912188A
    • 1999-06-15
    • US905686
    • 1997-08-04
    • Mark I. GardnerDaniel KadoshFrederick N. Hause
    • Mark I. GardnerDaniel KadoshFrederick N. Hause
    • H01L21/311H01L21/768H01L21/00
    • H01L21/76832H01L21/31116H01L21/76802H01L21/76814H01L21/76834H01L21/76895
    • A method of forming a contact hole in an interlevel dielectric layer using dual etch stops includes the steps of providing a semiconductor substrate, forming a gate over the substrate, forming a source/drain region in the substrate, providing a source/drain contact electrically coupled to the source/drain region, forming an interlevel dielectric layer that includes first, second and third dielectric layers over the source/drain contact, forming an etch mask over the interlevel dielectric layer, applying a first etch which is highly selective of the first dielectric layer with respect to the second dielectric layer through an opening in the etch mask using the second dielectric layer as an etch stop, thereby forming a first hole in the first dielectric layer that extends to the second dielectric layer without extending to the third dielectric layer, applying a second etch which is highly selective of the second dielectric layer with respect to the third dielectric layer through the opening in the etch mask using the third dielectric layer as an etch stop, thereby forming a second hole in the second dielectric layer that extends to the third dielectric layer without extending to the source/drain contact, and applying a third etch which is highly selective of the third dielectric layer with respect to the source/drain contact through the opening in the etch mask, thereby forming a third hole in the third dielectric layer that extends to the source/drain contact, wherein the first, second and third holes in combination provide the contact hole. In this manner, the contact hole is formed in the interlevel dielectric without any appreciable gouging of the underlying materials.
    • 使用双蚀刻停止件在层间电介质层中形成接触孔的方法包括以下步骤:提供半导体衬底,在衬底上形成栅极,在衬底中形成源极/漏极区域,提供源/漏接触电耦合 形成层间电介质层,该层间介质层包括在源极/漏极接触之上的第一,第二和第三电介质层,在层间电介质层上形成蚀刻掩模,施加第一蚀刻,第一蚀刻对第一电介质具有高选择性 通过使用第二介电层作为蚀刻停止层,通过蚀刻掩模中的开口相对于第二介电层的层,从而在第一介电层中形成第一孔,该第一孔延伸到第二介电层而不延伸到第三介电层, 施加相对于第三介电层通过开口而对第二电介质层具有高度选择性的第二蚀刻 在蚀刻掩模中使用第三介电层作为蚀刻停止层,从而在第二介电层中形成延伸到第三介电层而不延伸到源极/漏极接触的第二孔,并施加高度选择性的第三蚀刻 相对于通过蚀刻掩模中的开口的源极/漏极接触的第三电介质层,从而在延伸到源极/漏极接触的第三电介质层中形成第三孔,其中组合的第一,第二和第三孔 提供接触孔。 以这种方式,接触孔形成在层间电介质中,而没有任何明显的底层材料的气刨。
    • 8. 发明授权
    • Composite gate electrode incorporating dopant diffusion-retarding
barrier layer adjacent to underlying gate dielectric
    • 复合栅电极,其与掺杂剂扩散阻滞层结合,邻近底层栅极电介质
    • US5885877A
    • 1999-03-23
    • US837581
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseDaniel KadoshMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L29/49H01L21/336H01L21/3205
    • H01L21/28035H01L29/4916
    • A composite gate electrode layer incorporates a diffusion-retarding barrier layer disposed at the bottom of the gate electrode layer to reduce the amount of dopant which diffuses into the gate dielectric layer from the gate electrode layer. A lower nitrogen-containing gate electrode layer provides a diffusion-retarding barrier layer against dopant diffusion into the gate dielectric layer disposed therebelow, and an upper gate electrode layer is formed upon the lower layer and is doped to form a highly conductive layer. Together the first and second gate electrode layers form a composite gate electrode layer which incorporates a diffusion-retarding barrier layer adjacent to the underlying gate dielectric layer. The barrier layer may be formed by annealing a first polysilicon layer in a nitrogen-containing ambient, such as N.sub.2, NO, N.sub.2 O, and NH.sub.3, by implanting a nitrogen-containing material, such as elemental or molecular nitrogen, into a first polysilicon layer, and by in-situ depositing a nitrogen-doped first polysilicon layer. Diffusion of dopants into the gate dielectric layer may be retarded, as most dopant atoms are prevented from diffusing from the composite gate electrode layer at all. In addition, the nitrogen concentration within the gate dielectric layer, particularly at or near the substrate interface, may be maintained at lower concentrations than otherwise necessary to prevent dopant diffusion into the underlying substrate. The present invention is particularly well suited to thin gate dielectrics, such as a those having a thickness less than approximately 60 .ANG. when using a p-type dopant, such as boron.
    • 复合栅极电极层包括设置在栅极电极层底部的扩散阻挡层,以减少从栅极电极层扩散到栅极电介质层中的掺杂剂的量。 下部含氮栅电极层提供阻止扩散阻挡层,以阻止掺杂剂扩散到设置在其下方的栅介质层中,并且在下层上形成上栅极电极层,并且被掺杂以形成高导电层。 第一和第二栅极电极层一起形成复合栅极电极层,该复合栅极电极层包含与下面的栅极电介质层相邻的扩散阻滞阻挡层。 通过将含氮材料(例如元素或分子氮)注入到第一多晶硅层中,可以通过在氮气环境如N 2,NO,N 2 O和NH 3中退火第一多晶硅层来形成阻挡层 ,并通过原位沉积氮掺杂的第一多晶硅层。 完全可以防止掺杂剂扩散到栅极电介质层中,因为大多数掺杂剂原子被阻止从复合栅极电极层扩散。 此外,栅极电介质层内,特别是在衬底界面处或附近的氮浓度可以保持在比防止掺杂剂扩散到下面的衬底中所必需的更低的浓度。 本发明特别适用于薄栅电介质,例如当使用诸如硼的p型掺杂剂时厚度小于约60的薄电介质。
    • 9. 发明授权
    • Semiconductor fabrication having multi-level transistors and high density interconnect therebetween
    • 具有多电平晶体管和其间的高密度互连的半导体制造
    • US06232637B1
    • 2001-05-15
    • US09249954
    • 1999-02-12
    • Mark I. GardnerDaniel Kadosh
    • Mark I. GardnerDaniel Kadosh
    • H01L31036
    • H01L27/0688H01L21/8221
    • An integrated circuit fabrication process is provided in which an elevated doped polysilicon structure may be formed. The elevated structure may serve as a junction area of a transistor formed entirely within and upon the elevated polysilicon. The elevated structure frees up space within the lower level substrate for additional transistors and/or lateral interconnect, a benefit of which is to promote higher packing density within the integrated circuit. A transistor is provided which includes a gate conductor spaced between a pair of junctions. A primary interlevel dielectric is deposited across the transistor. A polysilicon structure is formed within a select portion of the upper surface of the primary interlevel dielectric. The polysilicon structure is a spaced distance above and a lateral distance from the transistor. A dopant is implanted into the polysilicon structure. A secondary interlevel dielectric is deposited across the primary interlevel dielectric and the doped polysilicon structure. Select portions of the primary and secondary interlevel dielectrics are then removed to expose one of the junctions and a portion of the doped polysilicon structure arranged proximate this junction. An interconnect is formed contiguously between the junction and the polysilicon structure by depositing a conductive material within the removed portions.
    • 提供了一种集成电路制造工艺,其中可以形成高掺杂多晶硅结构。 升高的结构可以用作完全在升高的多晶硅内部和之上形成的晶体管的结区域。 升高的结构释放了用于附加晶体管和/或横向互连的下层衬底内的空间,其益处是促进集成电路内的更高的堆积密度。 提供晶体管,其包括在一对结之间间隔开的栅极导体。 在晶体管两端沉积初级层间电介质。 在初级层间电介质的上表面的选择部分内形成多晶硅结构。 多晶硅结构是距离晶体管的上方和横向距离之间的间隔距离。 将掺杂剂注入到多晶硅结构中。 次级层间电介质沉积在初级层间电介质和掺杂多晶硅结构之间。 选择部分初级和次级层间电介质然后被去除以暴露出一个结点,并且掺杂多晶硅结构的一部分布置在该结附近。 通过在去除的部分内沉积导电材料,在结和多晶硅结构之间连续地形成互连。
    • 10. 发明授权
    • Asymmetrical IGFET devices with spacers formed by HDP techniques
    • 通过HDP技术形成间隔物的非对称IGFET器件
    • US06218251B1
    • 2001-04-17
    • US09187894
    • 1998-11-06
    • Daniel KadoshMark I. Gardner
    • Daniel KadoshMark I. Gardner
    • H01L21336
    • H01L29/66598H01L29/6653H01L29/66659H01L29/7835
    • In an IGFET device having at least one source/drain region with a lightly-doped sub-region proximate a channel region, the source/drain regions are formed by first implanting ions with parameters to form lightly-doped source/drain regions. A high density plasma deposition provides at least one spacer having preselected characteristics. As a result of the spacer characteristics, an ion implantation with parameters to form normally-doped source/drain regions is shadowed by the spacer. A portion of the source/drain region shadowed by the spacer results in a lightly-doped source/drain sub-region proximate the channel region. According to a second embodiment of the invention, the ion implantation resulting in the lightly-doped source/drain regions is eliminated. Instead, the spacer(s) formed by the high density plasma deposition and subsequent etching process only partially shadows the ion implantation that would otherwise result in normal doping of the source/drain regions. The parameters of the spacer(s) resulting from the high density plasma deposition and subsequent etching process result in a lightly-doped source/drain sub-region proximate the channel region. The shadowing of the spacer decreases with distance from the gate structure and results in a normal doping level for the portion of the source/drain terminal not shadowed by the spacer.
    • 在具有至少一个具有靠近沟道区的轻掺杂子区域的源极/漏极区域的IGFET器件中,通过首先用参数注入离子以形成轻掺杂的源极/漏极区域来形成源极/漏极区域。 高密度等离子体沉积提供至少一个具有预选特性的间隔物。 作为间隔物特性的结果,具有形成常态掺杂源极/漏极区域的参数的离子注入被间隔物遮蔽。 由间隔物遮蔽的源极/漏极区域的一部分导致靠近沟道区域的轻掺杂源极/漏极子区域。 根据本发明的第二实施例,消除了导致轻掺杂源/漏区的离子注入。 替代地,通过高密度等离子体沉积和随后的蚀刻工艺形成的间隔物仅部分地影响否则将导致源/漏区的正常掺杂的离子注入。 由高密度等离子体沉积和随后的蚀刻工艺产生的间隔物的参数导致靠近沟道区的轻掺杂的源极/漏极子区域。 间隔物的阴影随着与栅极结构的距离而减小,并且导致源极/漏极端子的未被间隔物遮蔽的部分的正常掺杂水平。