会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Method for controlling a permanent magnet motor
    • 永磁电机控制方法
    • US06605912B1
    • 2003-08-12
    • US09104488
    • 1998-06-25
    • Aravind Sourirajan BharadwajFang DengThomas Wolfgang NehlMalakondaiah Naidu
    • Aravind Sourirajan BharadwajFang DengThomas Wolfgang NehlMalakondaiah Naidu
    • H02P750
    • H02P21/0089H02P6/15H02P2209/07
    • A three region control strategy for a permanent magnet motor is presented. In a first control region, the permanent magnet motor is operated at, a 120° conduction square wave mode at reduced phase current, and below a no-load speed. The motor phase current commutation causes eddy current losses in the rotor magnets and core which are insignificant due to the low phase currents and relatively low rotor speed. Meanwhile, the inverter switching losses are kept low as two switches are in use (on/off) for each current commutation during the 120° conduction mode. In a second control region, the permanent magnet motor is operated at a 180° conduction sinusoidal wave mode with high phase currents. The 180° conduction sinusoidal wave mode minimizes the commutation loss. In a third control region, the permanent magnet motor is operated above its no-load speed or in a field weakening mode. At these higher speeds the slot ripple and commutation losses on the rotor increase, and the demagnetizing component of the armature reaction increases due to field weakening. Commutation losses are minimized through sinusoidal current operation. In the field weakening mode, the phase current conduction angle is set to 180° and the phase currents become sinusoidal.
    • 介绍了永磁电动机的三区控制策略。 在第一控制区域中,永磁电动机以相对于减小的相电流在120°导通方波模式下工作,并且低于空载速度。 电动机相电流换向导致转子磁体和磁芯中的涡流损耗由于低相电流和相对较低的转子转速而不显着。 同时,在120°导通模式期间,对于每个电流换向,两个开关正在使用(开/关),逆变器开关损耗保持较低。 在第二控制区域中,永磁电动机在具有高相电流的180°导通正弦波模式下操作。 180°导通正弦波模式使换向损耗最小化。 在第三控制区域中,永磁电动机在空载速度或弱磁模式下运转。 在这些更高的速度下,转子上的槽波动和换向损耗增加,并且由于磁场弱化,电枢反应的退磁分量增加。 通过正弦电流操作使换向损耗最小化。 在弱磁模式中,相电流导通角设定为180°,相电流变为正弦。
    • 9. 发明申请
    • HIGH-PERFORMANCE PISTON CORE FOR A MAGNETORHEOLOGICAL DAMPER
    • 用于磁流变阻尼器的高性能活塞芯
    • US20050210870A1
    • 2005-09-29
    • US10811516
    • 2004-03-29
    • Janusz GoldaszZbigniew SzklarzAlexander AlexandridisThomas NehlFang DengOlivier Valee
    • Janusz GoldaszZbigniew SzklarzAlexander AlexandridisThomas NehlFang DengOlivier Valee
    • F16D37/02F16F9/32F16F9/53
    • F16F9/3214F16F9/535
    • A high-performance piston core including a first piston cylinder and a second piston cylinder, with a piston center longitudinally disposed between and magnetically coupling the first piston cylinder and the second piston cylinder. The piston center is made of high-performance magnetic material, such as Cobalt steel (CoFe), Silicon steel (SiFe), Vanadium/Cobalt steel (Permendur), alloys thereof, or the like. The high-performance magnetic materials exhibit high magnetic permeability and reduce the magnetic reluctance of flux bottlenecks. In addition, high-performance magnetic materials typically saturate at a higher flux density than the conventional magnetic materials. The first piston cylinder and the second piston cylinder can be made of conventional magnetic material, such as low-carbon steel. The first piston cylinder can include a ring disposed about an end, where the end is longitudinally attached and magnetically coupled to the piston center.
    • 一种高性能活塞芯,包括第一活塞气缸和第二活塞气缸,活塞中心纵向设置在第一活塞气缸和第二活塞气缸之间,并且磁性联接。 活塞中心由钴(CoFe),硅钢(SiFe),钒/钴钢(Permendur),合金等高性能磁性材料制成。 高性能磁性材料具有高磁导率,降低了磁通量瓶颈的磁阻。 此外,高性能磁性材料通常以比常规磁性材料更高的磁通密度饱和。 第一活塞缸和第二活塞缸可由常规的磁性材料制成,例如低碳钢。 第一活塞气缸可以包括围绕端部设置的环,其中端部纵向附接并且磁耦合到活塞中心。