会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Wide bandgap semiconductor device including lightly doped active region
    • 宽带隙半导体器件包括轻掺杂的有源区
    • US5536953A
    • 1996-07-16
    • US208018
    • 1994-03-08
    • David L. DreifusBradley A. FoxJesko A. von Windheim
    • David L. DreifusBradley A. FoxJesko A. von Windheim
    • H01L29/10H01L29/167H01L29/786H01L31/103H01L33/02H01L31/0312H01L29/82
    • H01L33/025H01L29/1029H01L29/1058H01L29/167H01L29/78684H01L31/103
    • A semiconductor device for providing stable operation over a relatively wide temperature range includes a wide bandgap semiconductor active region having an intentional dopant of a first conductivity type and an unintentional impurity of a second conductivity type which together produce a free carrier concentration at room temperature. The concentration of the intentional dopant in the active region is preferably less than 1.times.10.sup.16 cm.sup.-3 and the concentration of the unintentional impurity is less than 0.1 times the intentional dopant concentration so that the intentional dopant concentration will be less than 1000 times the free carrier concentration at room temperature. The intentional dopant concentration supplies substantially all the majority free carriers in the active region. The wide bandgap semiconductor active region is preferably diamond, IV-IV carbides, III-V nitrides and phosphides and II-VI selenides, tellurides, oxides and sulfides. By lightly doping the active region to a level below 1.times.10.sup.16 cm.sup.-3, relatively uniform device characteristics can be achieved over a wide temperature range extending from room temperature to 1000 K and above.
    • 用于在相当宽的温度范围内提供稳定操作的半导体器件包括宽带隙半导体有源区,其具有第一导电类型的有意掺杂物和第二导电类型的无意杂质,其共同在室温下产生游离载流子浓度。 有源区域中的有意掺杂剂的浓度优选小于1×10 16 cm -3,并且非故意杂质的浓度小于有意掺杂剂浓度的0.1倍,使得有意掺杂剂浓度将小于自由载流子浓度的1000倍 在室温下。 有意掺杂剂浓度基本上供应活性区域中所有主要的自由载体。 宽带隙半导体活性区域优选为金刚石,IV-IV碳化物,III-V族氮化物和磷化物以及II-VI族硒化物,碲化物,氧化物和硫化物。 通过将有源区轻轻掺杂到1×1016cm-3以下的水平,可以在从室温延伸到1000K以上的宽的温度范围内实现相对均匀的器件特性。
    • 3. 发明授权
    • Diamond semiconductor device with carbide interlayer
    • 具有硬质合金中间层的金刚石半导体器件
    • US5455432A
    • 1995-10-03
    • US321164
    • 1994-10-11
    • Michelle L. HartsellDavid L. DreifusBradley A. Fox
    • Michelle L. HartsellDavid L. DreifusBradley A. Fox
    • H01L29/10H01L29/16H01L29/765H01L29/80H01L23/48H01L27/02
    • H01L29/1602H01L29/1054H01L29/765H01L29/802H01L2924/0002
    • A diamond semiconductor device with a carbide interlayer includes a diamond layer having a semiconducting diamond region of first conductivity type therein and an insulated gate structure on a face of the diamond layer. The relatively thin carbide interfacial layer is provided between the insulated gate structure and the diamond layer in order to inhibit the formation of electrically active defects, such as interface states at the face. By inhibiting the formation of interface states at the face, the carbide interfacial layer suppresses parasitic leakage of charge carriers from the diamond layer to the insulated gate structure. The carbide interfacial layer can be intrinsic silicon carbide or an intrinsic refractory metal carbide (e.g., TiC or WC) or the layer can be of opposite conductivity type to thereby form a P--N heterojunction with the diamond layer. The carbide interfacial layer and the insulated gate structure can be used in a variety of diamond electronic devices such as MIS capacitors, enhancement-mode and buried-channel insulated-gate field effect transistors (IGFETs), surface-channel and buried-channel charge-coupled devices (CCDs), detectors, heterojunction devices, and other related field effect devices. Related fabrication methods are also disclosed.
    • 具有碳化物中间层的金刚石半导体器件包括其中具有第一导电类型的半导体金刚石区域的金刚石层和在金刚石层的表面上的绝缘栅极结构。 在绝缘栅极结构和金刚石层之间提供相对薄的碳化物界面层,以便抑制电活性缺陷(例如在表面处的界面态)的形成。 通过抑制表面界面态的形成,碳化物界面层抑制电荷载体从金刚石层到绝缘栅极结构的寄生泄漏。 碳化物界面层可以是本征碳化硅或本征难熔金属碳化物(例如TiC或WC),或者该层可以具有相反的导电类型,从而与金刚石层形成P-N异质结。 碳化物界面层和绝缘栅结构可用于各种金刚石电子器件,如MIS电容器,增强型和埋沟通道绝缘栅场效应晶体管(IGFET),表面沟道和掩埋沟道电荷 - 耦合器件(CCD),检测器,异质结器件和其他相关的场效应器件。 还公开了相关的制造方法。
    • 7. 发明授权
    • Highly-oriented diamond film field-effect transistor
    • 高取向金刚石膜场效应晶体管
    • US5491348A
    • 1996-02-13
    • US313986
    • 1994-09-28
    • Hisasi KoyamaoKoichi MiyataKimitsugu SaitoDavid L. DreifusBrian R. Stoner
    • Hisasi KoyamaoKoichi MiyataKimitsugu SaitoDavid L. DreifusBrian R. Stoner
    • H01L21/314H01L21/338H01L29/04H01L29/16H01L29/812
    • H01L29/1602H01L29/045H01L29/812
    • A source electrode is formed on the first semiconducting diamond film and a drain electrode is formed on the second semiconducting diamond film. A highly resistant diamond film having a thickness of between 10 .ANG. and 1 mm and an electrical resistance of at least 10.sup.2 .OMEGA..cm or more is placed between the first and second semiconducting diamond films. A gate electrode is formed on the highly resistant diamond film. Thereby, a channel region is formed by these first and second semiconducting diamond films as well as the highly resistant diamond film. All or at least a part of said first and second semiconducting diamond films and the highly resistant diamond film are made of highly-oriented diamond films where either (100) or (111) crystal planes of diamond cover at least 80% of the film surface, and the differences {.DELTA..alpha., .DELTA..beta., .DELTA..gamma.} of Euler angles {.alpha., .beta., .gamma.} which represent the crystal plane orientation, satisfy .vertline..DELTA..alpha..vertline.
    • 在第一半导体金刚石膜上形成源电极,在第二半导体金刚石膜上形成漏电极。 在第一和第二半导体金刚石膜之间放置厚度在10埃至1毫米至10欧姆或更大的电阻之间的高度耐磨的金刚石薄膜。 在耐高压金刚石膜上形成栅电极。 因此,通过这些第一和第二半导体金刚石膜以及高度耐磨的金刚石膜形成沟道区。 所述第一和第二半导体金刚石膜的全部或至少一部分和高度耐金刚石膜由高取向金刚石膜制成,金刚石的(100)或(111)晶面覆盖至少80%的膜表面 ,并且表示晶面取向的欧拉角{α,β,γ}的差异{DELTAα,DELTAβ,DELTAγ}满足| DELTAα| <10°,| DELTA beta | <10°,| DELTA gamma | <10°,同时在相邻的晶面之间。
    • 10. 发明授权
    • Metal boride ohmic contact on diamond and method for making same
    • 金属硼化物欧姆接触金刚石及其制造方法
    • US5382808A
    • 1995-01-17
    • US62350
    • 1993-05-14
    • David L. DreifusGary A. Ruggles
    • David L. DreifusGary A. Ruggles
    • H01L21/04H01L29/16H01L29/45H01L23/48
    • H01L29/1602H01L21/043H01L29/45
    • An ohmic contact includes a metal boride layer on a semiconducting diamond layer. The metal boride preferably includes boron and a transition metal and, more preferably, a refractory metal. Heating of the metal boride layer and diamond during fabrication forms a highly boron-doped surface portion of the semiconductor diamond by boron diffusion. Alternately, the highly doped surface portion may be formed by selective ion implantation, annealing to form a graphitized surface portion, and removing the graphitized surface portion by etching to thereby expose the highly doped surface portion. The highly doped surface portion lowers the electrical resistivity of the contact. In addition, an interface region of a carbide may also be readily formed by heating. The carbide interface region enhances mechanical adhesion of the metal boride and also serves to lower the electrical resistance of the contact. The ohmic contact may be incorporated into many semiconductor devices including, for example, transistors, diodes, and other devices.
    • 欧姆接触包括半导体金刚石层上的金属硼化物层。 金属硼化物优选包括硼和过渡金属,更优选地包括难熔金属。 在制造过程中金属硼化物层和金刚石的加热通过硼扩散形成半导体金刚石的高硼掺杂表面部分。 或者,可以通过选择性离子注入,退火以形成石墨化表面部分,并且通过蚀刻去除石墨化表面部分从而暴露高度掺杂的表面部分来形成高度掺杂的表面部分。 高度掺杂的表面部分降低了触点的电阻率。 此外,也可以通过加热容易地形成碳化物的界面区域。 碳化物界面区域增强金属硼化物的机械粘附性,并且还用于降低接触的电阻。 欧姆接触可以并入许多半导体器件,包括例如晶体管,二极管和其它器件。