会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Mixtures of Bayesian networks
    • 贝叶斯网络的混合
    • US06807537B1
    • 2004-10-19
    • US08985114
    • 1997-12-04
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。
    • 10. 发明授权
    • Collaborative filtering with mixtures of bayesian networks
    • 使用贝叶斯网络混合进行协同过滤
    • US06496816B1
    • 2002-12-17
    • US09220199
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。