会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Programming process for 3-level programming logic devices
    • 3级可编程逻辑器件的编程过程
    • US5349691A
    • 1994-09-20
    • US058679
    • 1993-05-04
    • David A. HarrisonAbdul Malik
    • David A. HarrisonAbdul Malik
    • G06F17/50H03K19/177G06F9/302
    • G06F17/5054H03K19/17704
    • A process of programming a programmable logic device (PLD) to carry out a specified logic function. The PLD contains three levels of logic implemented as a plurality of functional blocks, each with AND and OR planes, and a programmable interconnect matrix or logic expander carrying out AND logic. After providing such a PLD with specified size constraints and after specifying a logic function, the function is split or factored into subfunctions or factors. A Boolean factorization procedure chooses factors by replacing pairs of product terms in the first factor with their supercube and minimizing the number input terms and product terms required. Subfunctions or factors which are too large can be simplified by combining pairs of inputs in the interconnect matrix. The product terms of a subfunction or factor can be ordered according to the number of input terms they have and assigned to the functional blocks one at a time. Functional blocks which use many inputs or product terms per output can have some of their assigned subfunctions split so as to pack the PLD more densely. Split subfunctions or factors are recombined in the interconnect matrix. After assigning terms to functional blocks and the matrix, they are loaded into the PLD using a device programmer to configure the logic arrays in the PLD.
    • 编程可编程逻辑器件(PLD)以执行指定逻辑功能的过程。 PLD包含实现为多个功能块的三个级别的逻辑,每个具有AND和OR平面,以及执行AND逻辑的可编程互连矩阵或逻辑扩展器。 在提供具有规定大小约束的PLD之后,并且在指定逻辑功能之后,该功能被分割或分解为子功能或因子。 布尔因式分解程序通过用第一个因子替换成对的超立方体来选择因素,并最小化所需数量的输入项和产品术语。 子功能或太大的因素可以通过组合互连矩阵中的输入对来简化。 子功能或因子的产品术语可以根据他们已经输入的功能块的数量和功能块一次一个地排序。 每个输出使用多个输入或产品项的功能块可以将其一些分配的子功能分开,以便更密集地封装PLD。 分裂子功能或因素在互连矩阵中重新组合。 在将术语分配给功能块和矩阵后,使用设备编程器将其加载到PLD中,以配置PLD中的逻辑阵列。
    • 3. 发明申请
    • Polytetrahydrofuran-Based Coating for Capillary Microextraction
    • 用于毛细管微萃取的聚四氢呋喃基涂层
    • US20060013981A1
    • 2006-01-19
    • US11161004
    • 2005-07-19
    • Abdul MalikAbuzar Kabir
    • Abdul MalikAbuzar Kabir
    • B29D22/00
    • B01J13/0065B01J20/26B01J20/28014B01J20/28047B01J20/285B01J2220/86C08G65/36G01N1/40G01N1/405Y10T428/1393
    • A sol-gel poly-THF coating was developed for high-performance capillary microextraction to facilitate ultra-trace analysis of polar and nonpolar organic compounds. Parts per quadrillion level detection limits were achieved using Poly-THF coated microextraction capillaries in conjunction with GC-FID. Sol-gel Poly-THF coatings showed extraordinarily high sorption efficiency for both polar and nonpolar compounds, and proved to be highly effective in providing simultaneous extraction of nonpolar, moderately polar, and highly polar analytes from aqueous media. Sol-gel poly-THF coated microextraction capillaries showed excellent thermal and solvent stability, making them very suitable for hyphenation with both gas-phase and liquid-phase separation techniques, including GC, HPLC, and CEC. In CME-HPLC and CME-CEC hyphenations, sol-gel poly-THF coated microextraction capillaries have the potential to provide new levels of detection sensitivity in liquid-phase trace analysis, and to extend the analytical scope of CME to thermally labile-, high molecular weight-, and other types of compounds that are not amenable to GC.
    • 开发了用于高性能毛细管微萃取的溶胶 - 凝胶多THF涂层,以促进极性和非极性有机化合物的超痕量分析。 使用聚四氢呋喃涂布的微萃取毛细管与GC-FID结合,实现了每千兆级检测限的部分。 溶胶 - 凝胶聚-THF涂层对极性和非极性化合物的吸附效率非常高,并被证明在从水性介质中同时提取非极性,中等极性和高极性的分析物方面非常有效。 溶胶 - 凝胶状聚四氢呋喃涂布的微萃取毛细管显示出优异的热和溶剂稳定性,使其非常适合气相和液相分离技术(包括GC,HPLC和CEC)的连字。 在CME-HPLC和CME-CEC连字中,溶胶 - 凝胶聚-THF涂覆的微萃取毛细血管具有在液相痕量分析中提供新水平的检测灵敏度的潜力,并将CME的分析范围扩展到热不稳定性 分子量和其他类型的不适合GC的化合物。
    • 5. 发明申请
    • Tube structure with sol-gel zirconia coating
    • 管结构用溶胶 - 凝胶氧化锆涂层
    • US20070095736A1
    • 2007-05-03
    • US11491786
    • 2006-07-24
    • Abdul MalikKhalid Alhooshani
    • Abdul MalikKhalid Alhooshani
    • B01D15/08
    • B01J20/286B01J20/28047B01J20/285B01J20/3242B01J20/3268B01J2220/86C23C18/1216C23C18/1254
    • The subject invention concerns zirconia-based hybrid organic-inorganic sol-gel coating for optional use as a stationary phase in capillary microextraction (CME), gas chromatographic (GC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), capillary electrochromatography (CEC) and related analytical techniques. Sol-gel chemistry is employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network. In one embodiment, a fused silica capillary is filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary. In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer becomes chemically bonded to the silanol groups on the inner capillary walls. The unbonded part of the sol solution is expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia —PDMDPS coating on the inner walls of the capillary. Polycyclic aromatic hydrocarbons, ketones, and aldehydes are efficiently extracted and preconcentrated from dilute aqueous samples followed by GC separation of the extracted analytes.
    • 本发明涉及在毛细管微萃取(CME),气相色谱(GC),高效液相色谱(HPLC),毛细管电泳(CE),毛细管电泳(GC),毛细管电泳 电色谱(CEC)和相关分析技术。 使用溶胶 - 凝胶化学法将羟基封端的有机硅聚合物(聚二甲基二苯基硅氧烷,PDMDPS)化学结合到溶胶 - 凝胶氧化锆网络。 在一个实施方案中,熔融石英毛细管填充有适当设计的溶胶溶液以允许溶胶 - 凝胶反应发生在毛细管内。 在该过程的过程中,逐渐变化的混合有机 - 无机溶胶 - 凝胶聚合物层与内毛细管壁上的硅烷醇基化学键合。 溶胶溶液的未粘合部分在氦气压力下从毛细管中排出,留下毛细管内壁上化学键合的溶胶 - 凝胶氧化锆-PDMDPS涂层。 有机萃取多环芳香烃,酮类和醛类,并从稀释的水样中预先浓缩,然后进行GC分离提取的分析物。
    • 8. 发明授权
    • Materials and methods for capillary microextraction in combination with high-performance liquid chromatography comprising a sol-gel germania triblock polymer
    • 与高效液相色谱组合的毛细管微萃取的材料和方法,其包括溶胶 - 凝胶锗纳三烯聚合物
    • US09528921B2
    • 2016-12-27
    • US13641640
    • 2011-04-18
    • Abdul MalikScott S. Segro
    • Abdul MalikScott S. Segro
    • G01N1/40G01N30/08B01J20/26B01J20/285B01J20/286G01N30/74
    • G01N1/405B01J20/262B01J20/285B01J20/286B01J2220/86G01N30/08G01N30/74Y10T436/255G01N21/33G01N2030/009G01N2030/062
    • Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. A germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.). Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. The analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (Kcs) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols, and amines, the Kcs values ranged from 1.8×101 to 2.0×104. The sol-gel germania triblock polymer coatings survived exposure to high temperature solvent conditions (200° C.) with little change in extraction capabilities. Reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3% to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 minutes to 10-15 minutes) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.
    • 制备了基于Germania的溶胶凝胶有机 - 无机杂化涂层,用于毛细管微萃取与高效液相色谱的在线偶联。 将基于锗酸盐的溶胶 - 凝胶前体,四正丁氧基锗烷和羟基封端的三嵌段共聚物,聚(环氧乙烷) - 嵌段 - 聚(环氧丙烷) - 嵌段 - 聚(环氧乙烷)化学地锚定到内部 熔融石英毛细管的壁(0.25mm ID)。 获得溶胶 - 凝胶锗三嵌段聚合物涂层的扫描电子显微镜图像以估计涂层厚度。 测定溶胶 - 凝胶锗有机 - 无机杂化涂层和样品(Kcs)之间的分析物分布常数。 对于不同化学类别的各种分析物,包括多环芳烃(PAHs),酮类,醇类,酚类和胺类,Kcs值范围为1.8×101〜2.0×104。 溶胶 - 凝胶锗三嵌段聚合物涂层在暴露于高温溶剂条件(200℃)下存活,萃取能力几乎没有变化。 还评估了溶胶 - 凝胶锗三嵌段聚合物涂层的制备方法的重现性,毛细管与毛细管的RSD值为5.3%至6.5%。 发现在提取中使用更高的流速显着地减少了所需的时间(从30-40分钟到10-15分钟)以达到溶胶 - 凝胶锗三嵌段聚合物涂层和样品溶液中分析物之间的平衡。
    • 9. 发明授权
    • High efficiency sol-gel gas chromatography column
    • 高效溶胶凝胶气相色谱柱
    • US08685240B2
    • 2014-04-01
    • US11599497
    • 2006-11-13
    • Abdul MalikAbuzar KabirChetan Shende
    • Abdul MalikAbuzar KabirChetan Shende
    • B01J20/285B01J20/28B01D15/26G01N30/56G01N30/60
    • B01J20/285B01D15/206B01D15/265B01J20/28047B01J20/286B01J2220/54B01J2220/86G01N30/56G01N30/6078G01N2030/567
    • A capillary column (10) includes a tube structure having inner walls (14) and a sol-gel substrate (16) coated on a portion of inner walls (14) to form a stationary phase coating (18) on inner walls (14). The sol solution used to prepare the sol-gel substrate (16) has at least one baseline stabilizing reagent and at least one surface deactivation reagent resulting in the sol-gel substrate (16) having at least one baseline stabilizing reagent residual and at least one surface deactivating reagent residual. A method of making the sol-gel solution is by mixing suitable sol-gel precursors to form the solution, stabilizing the solution by adding at least one baseline stabilization reagent, deactivating the solution by adding at least one surface deactivation reagent to the solution, and reacting the solution in the presence of at least one catalyst.
    • 毛细管柱(10)包括具有内壁(14)的管结构和涂覆在内壁(14)的一部分上以在内壁(14)上形成固定相涂层(18)的溶胶 - 凝胶基质(16) 。 用于制备溶胶 - 凝胶基质(16)的溶胶溶液具有至少一种基线稳定剂和至少一种表面去活化试剂,导致溶胶 - 凝胶底物(16)具有至少一种基线稳定剂残留物和至少一种 表面钝化试剂残留。 制备溶胶 - 凝胶溶液的方法是通过混合合适的溶胶 - 凝胶前体形成溶液,通过加入至少一种基线稳定剂来稳定溶液,通过向溶液中加入至少一种表面失活试剂来使溶液失活,以及 在至少一种催化剂存在下使溶液反应。
    • 10. 发明申请
    • MATERIALS AND METHODS FOR CAPILLARY MICROEXTRACTION IN COMBINATION WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY
    • 与高性能液相色谱联用的毛细微萃取的材料和方法
    • US20130071945A1
    • 2013-03-21
    • US13641640
    • 2011-04-18
    • Abdul MalikScott S. Segro
    • Abdul MalikScott S. Segro
    • G01N1/40
    • G01N1/405B01J20/262B01J20/285B01J20/286B01J2220/86G01N30/08G01N30/74Y10T436/255G01N21/33G01N2030/009G01N2030/062
    • Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. A germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.). Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. The analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (Kcs) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols, and amines, the Kcs values ranged from 1.8×101 to 2.0×104. The sol-gel germania triblock polymer coatings survived exposure to high temperature solvent conditions (200° C.) with little change in extraction capabilities. Reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3% to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 minutes to 10-15 minutes) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.
    • 制备了基于Germania的溶胶凝胶有机 - 无机杂化涂层,用于毛细管微萃取与高效液相色谱的在线偶联。 将基于锗酸盐的溶胶 - 凝胶前体,四正丁氧基锗烷和羟基封端的三嵌段共聚物,聚(环氧乙烷) - 嵌段 - 聚(环氧丙烷) - 嵌段 - 聚(环氧乙烷)化学地锚定到内部 熔融石英毛细管的壁(0.25mm ID)。 获得溶胶 - 凝胶锗三嵌段聚合物涂层的扫描电子显微镜图像以估计涂层厚度。 测定溶胶 - 凝胶锗有机 - 无机杂化涂层和样品(Kcs)之间的分析物分布常数。 对于不同化学类别的各种分析物,包括多环芳烃(PAHs),酮类,醇类,酚类和胺类,Kcs值范围为1.8×101〜2.0×104。 溶胶 - 凝胶锗三嵌段聚合物涂层在暴露于高温溶剂条件(200℃)下存活,萃取能力几乎没有变化。 还评估了溶胶 - 凝胶锗三嵌段聚合物涂层的制备方法的重现性,毛细管与毛细管的RSD值为5.3%至6.5%。 发现在提取中使用更高的流速显着地减少了所需的时间(从30-40分钟到10-15分钟)以达到溶胶 - 凝胶锗三嵌段聚合物涂层和样品溶液中分析物之间的平衡。