会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for determining the inverse of gravity correlation time
    • US11914100B2
    • 2024-02-27
    • US17421245
    • 2020-06-04
    • SOUTHEAST UNIVERSITY
    • Tijing Cai
    • G01V7/06G01V7/00G01V7/16
    • G01V7/06G01V7/00G01V7/16
    • The present invention discloses a method for determining an inverse of gravity correlation time. During data processing on gravity measurement of moving bases, a gravity anomaly is considered as a stationary random process in a time domain, and is described with a second-order Gauss Markov model, a third-order Gauss Markov model or an mth-order Gauss Markov model, and the inverse of gravity correlation time is an important parameter of the gravity-anomaly model, and according to a gravity sensor root mean square error, a Global Navigation Satellite System (GNSS) height root mean square error, an a priori gravity root mean square, and a gravity filter cutoff frequency during the gravity measurement of the moving bases, an inverse of gravity correlation time of the second-order, third-order or mth-order Gauss Markov model is determined. According to the method for determining an inverse of gravity correlation time provided in the present invention, a forward and backward Kalman filter during data processing on gravity measurement of moving bases can be adjusted, to obtain a high-precision and high-wavelength-resolution gravity anomaly value.
    • 10. 发明授权
    • Beam splitters
    • US10297358B2
    • 2019-05-21
    • US15317870
    • 2015-06-10
    • The Secretary of State for Business, Innovation & Skills
    • Yuri Borisovich Ovchinnikov
    • G21K1/00G21K1/06G01C19/02G01P15/02H05H3/04G01V7/00
    • A temporally continuous matter wave beam splitter (14) comprising a plurality of intersecting and interfering laser beam (kr, kb), which act as waveguides for a matter wave beam. The laser beams of the waveguides each have a frequency detuned below a frequency of an internal atomic transition of the matter wave. The matter wave has a wavevector which is an integral multiple of the wavevector of the laser beams within a region of intersection of the laser beams. There is also provided an atomic interferometer (200) comprising such a continuous matter wave beam splitter, and a solid state device comprising such a continuous matter wave beam splitter, which may be part of an atomic interferometer. A cold atom gyroscope, a cold atom accelerometer or a cold atom gravimeter comprising such a solid state device are also provided. There is further provided a quantum computer comprising such a solid state device, wherein atoms of the matter wave beam are in an entangled quantum state. There is also provided a method of splitting a matter wave beam, comprising introducing the matter wave beam into a first temporally continuous laser beam, the frequency of which is detuned below a frequency of an internal atomic transition of the matter wave beam; intersecting and interfering the first continuous laser beam with a second temporally continuous laser beam, the frequency of which is also detuned below the frequency of the internal atomic transition of the matter wave beam; providing the matter wave beam with a wavevector which is an integral multiple of the wavevector of the first and second laser beams within a region of intersection of the laser beams, whereby the laser beams act as waveguides for the matter wave beam.