会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Trees of classifiers for detecting email spam
    • 用于检测电子邮件垃圾邮件的分类树
    • US07930353B2
    • 2011-04-19
    • US11193691
    • 2005-07-29
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • G06F15/16
    • H04L51/12
    • Decision trees populated with classifier models are leveraged to provide enhanced spam detection utilizing separate email classifiers for each feature of an email. This provides a higher probability of spam detection through tailoring of each classifier model to facilitate in more accurately determining spam on a feature-by-feature basis. Classifiers can be constructed based on linear models such as, for example, logistic-regression models and/or support vector machines (SVM) and the like. The classifiers can also be constructed based on decision trees. “Compound features” based on internal and/or external nodes of a decision tree can be utilized to provide linear classifier models as well. Smoothing of the spam detection results can be achieved by utilizing classifier models from other nodes within the decision tree if training data is sparse. This forms a base model for branches of a decision tree that may not have received substantial training data.
    • 利用分类器模型填充的决策树利用电子邮件的每个功能使用单独的电子邮件分类器来提供增强的垃圾邮件检测。 这通过定制每个分类器模型提供了更高的垃圾邮件检测的概率,以便于在逐个特征的基础上更准确地确定垃圾邮件。 分类器可以基于诸如逻辑回归模型和/或支持向量机(SVM)等线性模型来构建。 分类器也可以基于决策树构建。 基于决策树的内部和/或外部节点的“复合特征”也可以用于提供线性分类器模型。 垃圾邮件检测结果的平滑可以通过使用来自决策树内的其他节点的分类器模型来实现,如果训练数据是稀疏的。 这形成了可能没有接收到大量训练数据的决策树的分支的基本模型。
    • 6. 发明授权
    • Visualization of high-dimensional data
    • 高维数据的可视化
    • US06519599B1
    • 2003-02-11
    • US09517138
    • 2000-03-02
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • G06F1730
    • G06F17/30994Y10S707/99945
    • Visualization of high-dimensional data sets is disclosed, particularly the display of a network model for a data set. The network, such as a dependency or a Bayesian network, has a number of nodes having dependencies thereamong. The network can be displayed items and connections, corresponding to nodes and dependencies, respectively. Selection of a particular item in one embodiment results in the display of the local distribution associated with the node for the item. In one embodiment, only a predetermined number of the items are shown, such as only the items representing the most popular nodes. Furthermore, in one embodiment, in response to receiving a user input, a sub-set of the connections is displayed, proportional to the user input. In another embodiment, a particular item is displayed in an emphasized manner, and the particular connections representing dependencies including the node represented by the particular item, as well as the items representing nodes also in these dependencies, are also displayed in the emphasized manner. Furthermore, in one embodiment, only an indicated sub-set of the items is displayed.
    • 公开了高维数据集的可视化,特别是显示数据集的网络模型。 诸如依赖关系或贝叶斯网络的网络具有多个具有依赖关系的节点。 网络可以分别显示对应于节点和依赖关系的项目和连接。 在一个实施例中,特定项目的选择导致与项目的节点相关联的本地分布的显示。 在一个实施例中,仅显示预定数量的项目,诸如仅表示最受欢迎节点的项目。 此外,在一个实施例中,响应于接收到用户输入,显示与用户输入成比例的连接的子集。 在另一个实施例中,以强调方式显示特定项目,并且还以强调的方式显示表示依赖性的特定连接,包括由特定项目表示的节点以及表示节点的项目也在这些依赖关系中。 此外,在一个实施例中,仅显示所指示的项目子集。
    • 7. 发明授权
    • Systems and methods for new time series model probabilistic ARMA
    • 新时间序列模型概率ARMA的系统和方法
    • US07580813B2
    • 2009-08-25
    • US10463145
    • 2003-06-17
    • Bo ThiessonChristopher A. MeekDavid M. ChickeringDavid E. Heckerman
    • Bo ThiessonChristopher A. MeekDavid M. ChickeringDavid E. Heckerman
    • G06F17/50G05B23/02
    • G06F17/18
    • The present invention utilizes a cross-prediction scheme to predict values of discrete and continuous time observation data, wherein conditional variance of each continuous time tube variable is fixed to a small positive value. By allowing cross-predictions in an ARMA based model, values of continuous and discrete observations in a time series are accurately predicted. The present invention accomplishes this by extending an ARMA model such that a first time series “tube” is utilized to facilitate or “cross-predict” values in a second time series tube to form an “ARMAxp” model. In general, in the ARMAxp model, the distribution of each continuous variable is a decision graph having splits only on discrete variables and having linear regressions with continuous regressors at all leaves, and the distribution of each discrete variable is a decision graph having splits only on discrete variables and having additional distributions at all leaves.
    • 本发明利用交叉预测方案来预测离散和连续时间观测数据的值,其中每个连续时间管变量的条件方差固定为小的正值。 通过在基于ARMA的模型中允许交叉预测,可以准确预测时间序列中连续和离散观测值。 本发明通过扩展ARMA模型来实现这一目的,使得第一时间序列“管”用于促进或“交叉预测”第二时间序列管中的值以形成“ARMAxp”模型。 一般来说,在ARMAxp模型中,每个连续变量的分布是仅在离散变量上分裂并具有在所有叶上具有连续回归的线性回归的决策图,并且每个离散变量的分布是仅分解为 离散变量,并在所有叶子上具有额外的分布。
    • 10. 发明申请
    • USER INTERACTION-BIASED ADVERTISING
    • 用户互动偏好广告
    • US20080114639A1
    • 2008-05-15
    • US11559992
    • 2006-11-15
    • Christopher A. MeekJody D. BiggsDavid M. Chickering
    • Christopher A. MeekJody D. BiggsDavid M. Chickering
    • G06Q30/00G06F17/40
    • G06Q30/02G06Q30/0242G06Q30/0273
    • On-line and/or off-line advertisement interactions are tracked for individual users. This information can then be utilized to adjust display parameters for an advertisement. Tracking can be accomplished via a client-side tracking mechanism and/or a server side tracking mechanism. The advertisement interactions allow advertisers to adjust their advertising campaigns to better target their advertisements. The tracked interactions can include, but are not limited to selections (clicking, etc.) and/or conversions (purchases) and the like. Some instances include a display component that can employ the user-specific interaction information to automatically adjust, for example, location, frequency, and/or to whom an advertisement is displayed. The interaction information can also be utilized for revenue generation by charging advertisers for the information and/or for adjusting their advertising campaigns and the like. Instances can be utilized with on-line and/or off-line advertising media.
    • 为个人用户追踪在线和/或离线广告交互。 然后可以利用该信息来调整广告的显示参数。 跟踪可以通过客户端跟踪机制和/或服务器端跟踪机制来实现。 广告互动允许广告客户调整他们的广告活动,以更好地定位他们的广告。 跟踪的交互可以包括但不限于选择(点击等)和/或转换(购买)等。 一些实例包括可以使用用户特定交互信息来自动调整例如位置,频率和/或广告被显示给谁的显示组件。 交互信息还可以通过向广告商收取信息和/或调整其广告活动等来用于创收。 实例可以与在线和/或离线广告媒体一起使用。