会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Visualization of high-dimensional data
    • 高维数据的可视化
    • US06519599B1
    • 2003-02-11
    • US09517138
    • 2000-03-02
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • D. Maxwell ChickeringDavid E. HeckermanChristopher A. MeekRobert L. RounthwaiteAmir NetzThierry D'Hers
    • G06F1730
    • G06F17/30994Y10S707/99945
    • Visualization of high-dimensional data sets is disclosed, particularly the display of a network model for a data set. The network, such as a dependency or a Bayesian network, has a number of nodes having dependencies thereamong. The network can be displayed items and connections, corresponding to nodes and dependencies, respectively. Selection of a particular item in one embodiment results in the display of the local distribution associated with the node for the item. In one embodiment, only a predetermined number of the items are shown, such as only the items representing the most popular nodes. Furthermore, in one embodiment, in response to receiving a user input, a sub-set of the connections is displayed, proportional to the user input. In another embodiment, a particular item is displayed in an emphasized manner, and the particular connections representing dependencies including the node represented by the particular item, as well as the items representing nodes also in these dependencies, are also displayed in the emphasized manner. Furthermore, in one embodiment, only an indicated sub-set of the items is displayed.
    • 公开了高维数据集的可视化,特别是显示数据集的网络模型。 诸如依赖关系或贝叶斯网络的网络具有多个具有依赖关系的节点。 网络可以分别显示对应于节点和依赖关系的项目和连接。 在一个实施例中,特定项目的选择导致与项目的节点相关联的本地分布的显示。 在一个实施例中,仅显示预定数量的项目,诸如仅表示最受欢迎节点的项目。 此外,在一个实施例中,响应于接收到用户输入,显示与用户输入成比例的连接的子集。 在另一个实施例中,以强调方式显示特定项目,并且还以强调的方式显示表示依赖性的特定连接,包括由特定项目表示的节点以及表示节点的项目也在这些依赖关系中。 此外,在一个实施例中,仅显示所指示的项目子集。
    • 5. 发明授权
    • Trees of classifiers for detecting email spam
    • 用于检测电子邮件垃圾邮件的分类树
    • US07930353B2
    • 2011-04-19
    • US11193691
    • 2005-07-29
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • G06F15/16
    • H04L51/12
    • Decision trees populated with classifier models are leveraged to provide enhanced spam detection utilizing separate email classifiers for each feature of an email. This provides a higher probability of spam detection through tailoring of each classifier model to facilitate in more accurately determining spam on a feature-by-feature basis. Classifiers can be constructed based on linear models such as, for example, logistic-regression models and/or support vector machines (SVM) and the like. The classifiers can also be constructed based on decision trees. “Compound features” based on internal and/or external nodes of a decision tree can be utilized to provide linear classifier models as well. Smoothing of the spam detection results can be achieved by utilizing classifier models from other nodes within the decision tree if training data is sparse. This forms a base model for branches of a decision tree that may not have received substantial training data.
    • 利用分类器模型填充的决策树利用电子邮件的每个功能使用单独的电子邮件分类器来提供增强的垃圾邮件检测。 这通过定制每个分类器模型提供了更高的垃圾邮件检测的概率,以便于在逐个特征的基础上更准确地确定垃圾邮件。 分类器可以基于诸如逻辑回归模型和/或支持向量机(SVM)等线性模型来构建。 分类器也可以基于决策树构建。 基于决策树的内部和/或外部节点的“复合特征”也可以用于提供线性分类器模型。 垃圾邮件检测结果的平滑可以通过使用来自决策树内的其他节点的分类器模型来实现,如果训练数据是稀疏的。 这形成了可能没有接收到大量训练数据的决策树的分支的基本模型。
    • 10. 发明授权
    • Noise reduction for a cluster-based approach for targeted item delivery with inventory management
    • 基于群集的方法进行降噪,用于通过库存管理进行目标物品交付
    • US06665653B1
    • 2003-12-16
    • US09565583
    • 2000-05-04
    • David E. HeckermanD. Maxwell Chickering
    • David E. HeckermanD. Maxwell Chickering
    • G06N504
    • G06Q30/02
    • Reduction of noise within a cluster-based approach for item (such as ad) allocation, such as by using a linear program, is described. In one embodiment, probabilities are discretized into a predetermined number of groups, where the mean for the group that a particular probability has been discretized into is substituted for the particular probability when the items are being allocated. In another embodiment, the probabilities are decreased by a power function of the variances for them. In a third embodiment, allocation of items to clusters is not changed unless the sample sizes used to determine the corresponding probabilities for those ads is greater than a threshold. In a fourth embodiment, after allocation is performed a first time, a predetermined number of item are removed, and reallocation is performed.
    • 描述了基于群集的方法中的项目(例如广告)分配(例如通过使用线性程序)来减少噪声。 在一个实施例中,将概率离散为预定数量的组,其中特定概率已被离散化的组的均值代替项目被分配时的特定概率。 在另一个实施例中,通过它们的方差的幂函数来降低概率。 在第三实施例中,除了用于确定这些广告的相应概率的样本大小大于阈值之外,项目到群集的分配也不会改变。 在第四实施例中,在首次执行分配之后,去除预定数量的项目,并且执行重新分配。