会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations
    • 用于执行高分辨率声学成像和其他样本探测和修改操作的光学声学方法和装置
    • US20090272191A1
    • 2009-11-05
    • US11921635
    • 2006-05-30
    • Humphery J MarisArto V. Nurmikko
    • Humphery J MarisArto V. Nurmikko
    • G01N29/04
    • A61B8/00A61B5/0097G01N29/0681G01N29/221G01N29/2418G01N2291/02827G01N2291/02854G01N2291/0423G01N2291/0427G01S15/8965
    • One aspect of the present invention concerns scanning acoustic microscopes in which sound waves used for imaging purposes are generated by an opto-acoustical process. A scanning acoustic microscope of the present invention includes an opto-acoustic transducer assembly having a substrate. Formed on or in the substrate of the opto-acoustic transducer assembly is a layer of opto-acoustic material. When pulsed light waves impinge the layer of opto-acoustic material, pulsed sound waves are created. An acoustic lens also formed in the substrate focuses the pulsed sound waves which are then used to probe the physical and mechanical properties of a sample object. Pulsed sound waves reflecting off the sample object return to the opto-acoustic transducer where the pulsed sound waves impinge the layer of opto-acoustic material. The impinging sound waves change at least one optical property of the layer of opto-acoustic material. This change, which is dependent on changes to the pulsed sound waves caused by the interaction of the pulsed sound waves and the sample object, is then sensed using pulsed light waves. In one possible embodiment of the present invention, the layer of opto-acoustic material is deposited on the substrate in a plurality of non-contiguous concentric rings. The plurality of non-contiguous concentric rings operates as an acoustic analogue of a Fresnel lens.
    • 本发明的一个方面涉及扫描声学显微镜,其中用于成像目的的声波通过光学声学过程产生。 本发明的扫描型声学显微镜包括具有基板的光声换能器组件。 形成在光声换能器组件的基底上或其中的光声材料层。 当脉冲光波冲击光声材料层时,产生脉冲声波。 也形成在基板中的声透镜聚焦脉冲声波,然后将其用于探测样品物体的物理和机械特性。 反射离开样品物体的脉冲声波返回到光声换能器,其中脉冲声波撞击光声材料层。 入射的声波改变光声材料层的至少一个光学特性。 然后使用脉冲光波来检测由脉冲声波和样本物体的相互作用引起的对脉冲声波的变化的这种变化。 在本发明的一个可能实施例中,光声材料层在多个不连续的同心环中沉积在基底上。 多个不连续的同心环作为菲涅尔透镜的声学类似物操作。
    • 5. 发明授权
    • Enhanced ultra-high resolution acoustic microscope
    • 增强型超高分辨率声学显微镜
    • US08302480B2
    • 2012-11-06
    • US12449415
    • 2008-02-05
    • Humphrey J. MarisArto V. Nurmikko
    • Humphrey J. MarisArto V. Nurmikko
    • G01N29/06
    • G01N29/0681G01N29/2418G01S15/8965G10K15/046
    • An optical-acoustic transducer structure includes at least one metal or semiconducting film in which a part of a pump light pulse is absorbed to generate a sound pulse; and at least one dielectric film. The thicknesses and optical properties of the at least one metal or semiconducting film and the at least one dielectric film are selected so that a returning sound pulse results in a measurable change in the optical reflectivity and/or some other optical characteristic of the transducer structure. The transducer structure includes a resonant cavity, and an output surface that is shaped so as to provide no significant focusing of generated sound waves when the sound waves are launched towards a surface of the sample.
    • 光声换能器结构包括至少一个金属或半导体膜,其中泵浦光脉冲的一部分被吸收以产生声脉冲; 和至少一个电介质膜。 选择至少一种金属或半导体膜和至少一种电介质膜的厚度和光学性质,使得返回的声脉冲导致换能器结构的光学反射率和/或某些其他光学特性的可测量的变化。 换能器结构包括谐振腔和输出表面,其被形成为当声波朝向样品的表面发射时不产生所产生的声波的显着聚焦。
    • 6. 发明授权
    • Optical tracking and detection of particles by solid state energy sources
    • 固态能源的光学跟踪和粒子检测
    • US07064827B2
    • 2006-06-20
    • US10442795
    • 2003-05-20
    • Arto V. NurmikkoRichard K. Chang
    • Arto V. NurmikkoRichard K. Chang
    • G01N21/00G01J3/30
    • G01N15/1456G01N2015/1493
    • A particle detector has a chamber defining a pathway that a target particle follows between an entry and an exit point, a solid-state energy source such as an LED, and a re-emission sensor. The energy source imparts energy to the particle between the two points, and the sensor includes an arcuate or multi-planar lens to focus energy re-emitted by the particle. The particle is identifiable by its re-emitted energy spectrum. A scanner re-directs the beam from a single energy source to track the particle between the entry and exit points. Alternatively, the energy source is a plurality of source elements that each scan the particle at a single position. Another embodiment is a chipscale detector system wherein energy source elements are disposed on a source layer, sensor elements are disposed on a sensor layer, and one or more target particles to be detected are retained on a capture layer disposed therebetween.
    • 粒子检测器具有限定目标粒子在入口和出口点之间的路径,固体能量源(例如LED)和再发射传感器的腔室。 能量源向两点之间的颗粒施加能量,并且传感器包括用于聚焦由颗粒再发射的能量的弧形或多平面透镜。 颗粒可以通过其再发射的能谱来识别。 扫描仪重新引导来自单个能量源的光束以跟踪进入点和出口点之间的粒子。 或者,能量源是多个源元素,每个元素在单个位置扫描粒子。 另一个实施例是一种芯片尺寸检测器系统,其中能量源元件设置在源层上,传感器元件设置在传感器层上,并且待检测的一个或多个目标颗粒被保持在设置在其之间的捕获层上。
    • 9. 发明申请
    • ENHANCED ULTRA-HIGH RESOLUTION ACOUSTIC MICROSCOPE
    • 增强超分辨率声学显微镜
    • US20110036171A1
    • 2011-02-17
    • US12449415
    • 2008-02-05
    • Humphrey J. MarisArto V. Nurmikko
    • Humphrey J. MarisArto V. Nurmikko
    • G01N29/00
    • G01N29/0681G01N29/2418G01S15/8965G10K15/046
    • An optical-acoustic transducer structure includes at least one metal or semiconducting film in which a part of a pump light pulse is absorbed to generate a sound pulse; and at least one dielectric film. The thicknesses and optical properties of the at least one metal or semiconducting film and the at least one dielectric film are selected so that a returning sound pulse results in a measurable change in the optical reflectivity and/or some other optical characteristic of the transducer structure. The transducer structure includes a resonant cavity, and an output surface that is shaped so as to provide no significant focusing of generated sound waves when the sound waves are launched towards a surface of the sample.
    • 光声换能器结构包括至少一个金属或半导体膜,其中泵浦光脉冲的一部分被吸收以产生声脉冲; 和至少一个电介质膜。 选择至少一种金属或半导体膜和至少一种电介质膜的厚度和光学性质,使得返回的声脉冲导致换能器结构的光学反射率和/或某些其他光学特性的可测量的变化。 换能器结构包括谐振腔和输出表面,其被形成为当声波朝向样品的表面发射时不产生所产生的声波的显着聚焦。