会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Analog sun sensor
    • 模拟太阳传感器
    • US5572316A
    • 1996-11-05
    • US350683
    • 1994-12-07
    • Carlo E. ZaffanellaRobert C. SavocaTodd J. Bednarek
    • Carlo E. ZaffanellaRobert C. SavocaTodd J. Bednarek
    • G01C21/24G01B11/26
    • G01C21/24
    • Continuous positional information for an orbiting body such as a spacecraft, satellite, or the like with respect to a reference body, for example, the sun, is provided by a first continuous sensor which continually views the sun from the orbiting body and generates electrical signals which provide two axis information on the orbiting body's position. Analog sensors of this type have low accuracy because of transfer function non-linearity, degradation due to environmental aging, or radiation effects and others. A second periodic sensor is directed at the reference body to provide periodic positional updates. These updates are used as references to which the instantaneous output of a continuous sensor are compared so that error associated with the output of the continuous sensor can be eliminated to the accuracy of the calibration. The first continuous sensor preferably utilizes a first and second double triangle detector arranged to form first and second rectangles each having a slot aperture mounted thereon for projecting a line image normal to each rectangle. The first and second double triangle detectors are arranged orthogonally with respect to each other. An algorithm is used to accurately locate the position of the slit shadows on the first and second detectors on the continuous sensor, and thus provide a continuous position for the reference body such as the sun. The second periodic sensor has a patterned detector mask positioned over a very small area detector for producing periodic positional updates which information can be used to correct the continuous sensor errors and provide an accurate analog sun position sensor.
    • 相对于参考体(例如太阳)的诸如航天器,卫星等的轨道体的连续位置信息由第一连续传感器提供,第一连续传感器连续地从轨道体观察太阳并产生电信号 其提供关于轨道体位置的两轴信息。 这种类型的模拟传感器由于传递函数非线性,由于环境老化引起的退化或辐射效应等原因,具有低精度。 第二周期性传感器被引导到参考体以提供周期性位置更新。 将这些更新用作参考,将连续传感器的瞬时输出进行比较,从而可以消除与连续传感器的输出相关联的误差,使其校准的准确性。 第一连续传感器优选地利用布置成形成第一和第二矩形的第一和第二双三角形检测器,每个矩形具有安装在其上的槽孔,用于投影垂直于每个矩形的线图像。 第一和第二双三角形检测器相对于彼此正交配置。 使用算法来精确地定位连续传感器上的第一和第二检测器上的狭缝阴影的位置,从而为诸如太阳的参考体提供连续的位置。 第二周期性传感器具有位于非常小的区域检测器上的图案化检测器掩模,用于产生周期性位置更新,该信息可用于校正连续传感器误差并提供精确的模拟太阳位置传感器。
    • 2. 发明授权
    • Dual field horizon scanner
    • 双场平面扫描仪
    • US4792684A
    • 1988-12-20
    • US31435
    • 1987-03-26
    • Robert C. Savoca
    • Robert C. Savoca
    • G01S3/789G01J5/08
    • G01S3/789
    • Pitch and roll attitude information of an orbiting body is provided by sensing the discontinuity of optical radiation in a scan field of view between the reference body and outer space using a scanner which simultaneously scans two concentric conical paths through the field of view about the same axis of rotation of the orbiting body. The scanner comprises a scanning mirror split into two halves which are tilted through an angle with respect to each other and are also displaced in phase with respect to each other about the axis of rotation. The scanner may also be a prism having angled faces on opposite sides of the optical axis of the scanner which are also displaced in phase. Either scanner results in having a detector view two instantaneous fields of view simultaneously. An infrared detector receiving the radiation from these two fields of view produces signals which can be used to determine pitch and roll attidue as well as altitude on each scan which identifies four points around the horizon. This is all accomplished using but a single conical scanner.
    • 通过使用扫描器检测在参考体和外部空间之间的扫描视野中的光辐射的不连续性来提供轨道体的俯仰和俯仰姿态信息,扫描仪同时扫描通过相同轴线的视场的两个同心圆锥形路径 的旋转体。 扫描仪包括分成两半的扫描镜,它们相对于彼此倾斜一个角度,并且也围绕旋转轴线相对于彼此相位移位。 扫描仪也可以是在扫描器的光轴的相对侧上具有成角度的棱镜,棱镜也同相位移。 任一扫描仪都能使检测器同时观察到两个瞬时视场。 接收来自这两个视野的辐射的红外探测器产生信号,该信号可以用于确定每个扫描上的俯仰和滚动状态以及识别地平线周围四个点的高度。 这都是使用单个锥形扫描仪完成的。
    • 3. 发明授权
    • High-accuracy attitude sensor for spin stabilized satellite
    • 用于自旋稳定卫星的高精度姿态传感器
    • US5048774A
    • 1991-09-17
    • US453707
    • 1989-12-20
    • Robert C. Savoca
    • Robert C. Savoca
    • B64G1/28B64G1/36G01S3/786
    • B64G1/365B64G1/281B64G1/36G01S3/7862G01S3/7868B64G1/363
    • A conical scanner having a detector is mounted on a spinning satellite with the scaner axis directed normal to the satellite spin axis for scanning the detector over a great circle passing through the poles of the spin axis of the satellite and producing horizon crossing information of the bodies in the scanning path of the scanner. The scan rate of the conical scanner is synchroized with the spin rate of the satellite and then by slightly increasing or decreasing the scan rate of the conical scanner, successive crossings are precessed through the field of view of the detector for determining the orientation of the satellite with respect to the earth or other celestial body such as the sun or the moon with great accuracy. When the satellite is operated at high spin rates, the conical scanner is operated at a slower rotational speed allowing gaps between successive scans which are filled by precessing the conical scanner to fill in the gaps after several satellite rotations.
    • 具有检测器的锥形扫描仪安装在旋转卫星上,其扫描器轴指向卫星旋转轴线,以便在穿过卫星的旋转轴的极点的大圆上扫描检测器,并产生物体的水平交叉信息 在扫描仪的扫描路径中。 锥形扫描器的扫描速率与卫星的旋转速率同步,然后通过略微增加或减小锥形扫描仪的扫描速率,连续的交叉通过检测器的视野进入,以确定卫星的方向 相对于地球或其他天体,如太阳或月亮,准确度很高。 当卫星以高旋转速率运行时,锥形扫描仪以较慢的旋转速度运行,允许通过进行锥形扫描器填充的连续扫描之间的间隙,以在几次卫星旋转之后填充间隙。
    • 4. 发明授权
    • Radiometer probe
    • 辐射计探头
    • US3942891A
    • 1976-03-09
    • US544988
    • 1975-01-29
    • Seymour C. SpielbergerRobert C. Savoca
    • Seymour C. SpielbergerRobert C. Savoca
    • G01J5/38G01J5/48
    • G01J5/38
    • A hand-held radiometer for non-contact temperature measurement of objects is provided with a probe which is adapted to be mounted on the optical barrel of the radiometer to permit the radiometer to which it is attached to provide contact temperature measurements. The probe comprises a thin plastic film of low thermal mass which is shaped on one end thereof to be easily deformed when brought into contact with a specimen whose temperature is desired to be measured. The inner surface of the plastic film has a high emissivity, and a retainer means is provided on the other end of the thin plastic film for mounting the probe on the optical barrel of the radiometer.
    • 用于对物体进行非接触式温度测量的手持式辐射计设置有适于安装在辐射计的光学镜筒上的探头,以允许与其连接的辐射计提供接触温度测量。 该探针包括一个低热量的薄塑料薄膜,该塑料薄膜的一端成形,当与要测量温度的样品接触时容易变形。 塑料薄膜的内表面具有高发射率,在薄塑料薄膜的另一端设有保持装置,用于将探针安装在辐射计的光学筒上。
    • 5. 发明授权
    • Scanning earth sensor using the sun's position for determining yaw
    • 使用太阳的位置扫描地球传感器以确定偏航
    • US5257760A
    • 1993-11-02
    • US903149
    • 1992-06-24
    • Robert C. Savoca
    • Robert C. Savoca
    • B64G1/36G01S3/786
    • G01S3/7867B64G1/365B64G1/361B64G1/363B64G1/366
    • A scanning sensor having a radiation detector is mounted on a spacecraft or satellite orbiting the earth. The scanner is pointed in such a way with respect to the orbit plane of the satellite that the instantaneous field of view of the detector crosses the region between the lower and upper limits of the travel of a celestial body in a year in order for the radiation detector of the earth sensor to encounter the celestial body at least once per orbit. Electrical signals based on the horizon crossing and the presence of a celestial body in the field of view of the detector are generated and used to derive Yaw, Pitch and Roll attitude information for the satellite with respect to the earth.
    • 具有辐射探测器的扫描传感器安装在绕地球运行的航天器或卫星上。 扫描仪相对于卫星的轨道平面以这样的方式指向,即,检测器的瞬时视场在一年中跨越天体的行进的下限和上限之间的区域,以便辐射 地球传感器的探测器每次轨道至少遇到一次天体。 产生基于地平线交叉的电信号和在检测器视场中天体的存在,并用于导出卫星相对于地球的偏航,俯仰和俯仰姿态信息。
    • 6. 发明授权
    • Laser radiation protected horizon sensor with successive reststrahlen
    • 激光辐射防护水平传感器与连续的reststrahlen
    • US4914287A
    • 1990-04-03
    • US221101
    • 1988-07-19
    • Robert C. Savoca
    • Robert C. Savoca
    • G01S3/781G01S3/789
    • G01S3/789G01S3/781
    • A horizon sensor which senses the horizon and produces a signal which indicates orientation with respect thereto is provided for scanning the horizon or distant line of discontinuity in optical radiation by a detector sensitive to such radiation and using the signals generated by the detector in crossing the line of discontinuity in optical radiation for attitude control of moving bodies. A scanner for the detector has two successive reflecting elements in optical alignment with the detector for reflectively applying predetermined optical radiation from a scanned field of view which includes the line of discontinuity in optical radiation. Reststrohlen mirrors which absorb and transmit predetermined laser radiation and reflect said predetermined optical radiation comprise the two successive reflecting elements which perform the scanning for protecting the horizon sensor from laser radiation damage by preventing the application of the laser radiation from reaching the detector or other sensitive components of the horizon sensor.
    • 感测水平线并产生指示相对于其的方向的信号的水平传感器被提供用于通过对这种辐射敏感的检测器扫描光辐射中的不连续的水平线或远距离线,并且使用由检测器产生的信号穿过线 的光辐射不连续性用于移动体的姿态控制。 用于检测器的扫描器具有与检测器光学对准的两个连续的反射元件,用于从包括光辐射中的不连续线的扫描视野反射地施加预定的光辐射。 吸收和传输预定的激光辐射并反射所述预定的光辐射的反射镜包括两个连续的反射元件,这两个反射元件执行扫描,以通过防止激光辐射施加到检测器或其它敏感元件来保护水平传感器免受激光辐射损伤 的地平线传感器。
    • 7. 发明授权
    • Yaw sensing conical scanner horizon sensor
    • Yaw感应锥形扫描仪水平传感器
    • US4791297A
    • 1988-12-13
    • US31436
    • 1987-03-26
    • Robert C. SavocaGerald Falbel
    • Robert C. SavocaGerald Falbel
    • G01S3/789G01J5/08
    • G01S3/789
    • A radiation detector is scanned over two fan fields of view by first and second cylindrical lenses spaced about the axis of rotation of a common optical element positioned on the axis of rotation. The optical element is rotated about the optical axis by a motor or the rotation of the orbiting body on which the scanner is mounted. In one form the common optical element is a chisel mirror having the first and second cylindrical lenses positioned on opposite sides thereof and tilted at an angle of 45.degree. with respect to the axis of rotation producing two fan fields which are 180.degree. apart in phase. As an alternative the common optical element may comprise a cylinder having the second cylindrical lens positioned along with a bevelled reflective upper surface for producing a vertical fan field. The cylindrical lenses and common optical element may be incorporated in a conical scanner employing an infrared detector which systems can be combined to produce yaw, pitch, roll, attitude information in a single horizon sensor head.
    • 通过位于旋转轴线上的公共光学元件的旋转轴线隔开的第一和第二柱面透镜在两个风扇视场上扫描辐射探测器。 光学元件通过电动机围绕光轴旋转或者安装有扫描仪的轨道体的旋转。 在一种形式中,普通光学元件是凿子镜,其具有位于其相对侧上的第一和第二柱面透镜,并且相对于旋转轴线以45°的角度倾斜,产生相位相差180°的两个扇形场。 作为替代,普通光学元件可以包括具有与倾斜的反射上表面一起定位的第二柱面透镜的圆柱体,用于产生竖直扇形场。 柱面透镜和普通光学元件可以结合在使用红外检测器的锥形扫描仪中,该系统可以被组合以在单个水平传感器头中产生偏航,俯仰,滚动,姿态信息。
    • 8. 发明授权
    • Staring horizon sensor
    • 凝视地平线传感器
    • US6150660A
    • 2000-11-21
    • US181115
    • 1998-10-28
    • Robert C. Savoca
    • Robert C. Savoca
    • B64G1/36G01C21/02G01J5/14
    • G01C21/02B64G1/365B64G1/36B64G1/366
    • A staring horizon sensor is mounted on an orbiting satellite has one or more linear infrared detector arrays having the horizon being detected imaged thereon. The arrays are each connected in cyclic repetitive alternating polarity patterns for generating at least two output signals which are offset in phase. The output signals are processed to locate the position of the horizon on the arrays. The repetitive pattern interconnection of the elements in the arrays provide a focal plane data compression which reduces the bandwidth as well as the complexity of the processing electronics. In addition, interconnecting the detective elements in repetitive alternating polarity groups having a spatial frequency greater than the spatial frequency of the thermal variation of the horizon minimize any error due to the earth's thermal variations.
    • 一个凝视的地平线传感器被安装在轨道卫星上,具有一个或多个线性红外探测器阵列,其中检测到水平仪成像在其上。 阵列各自以循环重复的交替极性图案连接,以产生相位偏移的至少两个输出信号。 处理输出信号以定位阵列上的地平线的位置。 阵列中的元件的重复图案互连提供了焦平面数据压缩,其减少了带宽以及处理电子器件的复杂性。 此外,将具有大于地平线的热变化的空间频率的空间频率的重复交替极性组中的检测元件相互连接使得由于地球的热变化引起的任何误差最小化。