会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Two pole coupling noise analysis model for submicron integrated circuit design verification
    • 用于亚微米集成电路设计验证的双极耦合噪声分析模型
    • US06536022B1
    • 2003-03-18
    • US09513545
    • 2000-02-25
    • Kathirgamar AingaranEdgardo F. KlassChaim AmirChin-Man Kim
    • Kathirgamar AingaranEdgardo F. KlassChaim AmirChin-Man Kim
    • G06F1750
    • G06F17/5036
    • An automated method of analyzing crosstalk in a digital logic integrated circuit, the method operating on a digital computer, is described. The method uses available software to make an extracted, parameterized netlist from a layout of the integrated circuit. For at least one potential victim wire of the plurality of wires, determining a subset of the wires of the chip are found to be potential aggressor wires that may couple to the victim wire. The aggressor wires are combined into a common aggressor. A risetime of the common aggressor is calculated and used to calculate the magnitude of coupled noise on the victim wire induced by the aggressor wires. An alarm threshold for each potential victim wire is determined based upon the type of logic gate that receives the victim wire. The alarm thresholds for each potential victim wire are compared to the calculated height of a coupled noise on the victim wire to determine which, if any, wires of the design suffer enough crosstalk noise that they should be redesigned.
    • 描述了在数字逻辑集成电路中分析串扰的自动化方法,该方法在数字计算机上操作。 该方法使用可用的软件从集成电路的布局中提取一个提取的参数化网表。 对于多条电线中的至少一个潜在的受损线,确定芯片的导线的子集被发现是潜在的可能耦合到受电线的电缆。 侵略者的电线被组合成一个共同的侵略者。 计算共同侵略者的上升时间,并用于计算由侵略线引起的受害线上的耦合噪声的幅度。 基于接收到受扰线的逻辑门的类型,确定每个潜在受害线的报警阈值。 将每个潜在的受扰物线的报警阈值与受害线上的耦合噪声的计算高度进行比较,以确定设计中的哪一条线(如果有的话)遭受足够的串扰噪声,则应重新设计。
    • 3. 发明授权
    • Single phase edge-triggered dual-rail dynamic flip-flop
    • 单相边沿触发双轨动态触发器
    • US6121807A
    • 2000-09-19
    • US317656
    • 1999-05-24
    • Edgardo F. KlassChaim Amir
    • Edgardo F. KlassChaim Amir
    • H03K3/356H03K3/037
    • H03K3/356121
    • A single phase edge-triggered dual-rail dynamic flip-flop circuit for use with dynamic logic gates includes an input stage, precharge stage and buffer. The input stage is coupled to receive a data-input signal and a clock signal. During the precharge phase, the input stage provides an output signal that is the complement of the data input signal. When the data input signal is provided by a dynamic logic gate, the input stage output signal is precharged to a logic high level. During the evaluation phase, the input stage generates an output signal that either remains at a logic high level or else transitions from high-to-low. The precharge stage receives the output signal from the input stage and the clock signal. During the precharge phase, the precharge stage generates a logic high level output signal independently of the signal received from the input stage. However, the logic high level signal from the input stage turns on hard a n-channel transistor in the precharge stage, which minimizes the delay through the precharge stage during the evaluation phase. During the evaluation phase, the precharge stage outputs the complement of the output signal received from the input stage. The buffer is coupled to receive the output signal from the precharge stage. During both the precharge and evaluation phases, the buffer outputs the complement of the output signal received from the precharge stage.
    • 用于动态逻辑门的单相边沿触发双轨动态触发器电路包括输入级,预充电级和缓冲器。 输入级被耦合以接收数据输入信号和时钟信号。 在预充电阶段期间,输入级提供作为数据输入信号的补码的输出信号。 当数据输入信号由动态逻辑门提供时,输入级输出信号被预充电到逻辑高电平。 在评估阶段期间,输入级产生一个输出信号,保持在逻辑高电平或从高到低转换。 预充电阶段接收来自输入级的输出信号和时钟信号。 在预充电阶段期间,预充电阶段独立于从输入级接收的信号产生逻辑高电平输出信号。 然而,来自输入级的逻辑高电平信号在预充电阶段打开硬通道n沟道晶体管,这在评估阶段期间通过预充电阶段的延迟最小化。 在评估阶段,预充电阶段输出从输入级接收的输出信号的补码。 缓冲器被耦合以从预充电阶段接收输出信号。 在预充电和评估阶段期间,缓冲器输出从预充电阶段接收的输出信号的补码。
    • 4. 发明授权
    • Non-blocking delayed clocking system for domino logic
    • 用于多米诺骨牌的非阻塞延迟计时系统
    • US6018254A
    • 2000-01-25
    • US884841
    • 1997-06-30
    • Alan C. RogersEdgardo F. KlassChaim AmirJason M. Hart
    • Alan C. RogersEdgardo F. KlassChaim AmirJason M. Hart
    • H03K19/096
    • H03K19/0963
    • A non-blocking multiple-phase clocking system for use with domino-type dynamic logic provides clock phases with overlapping evaluation phases to a circuit including a several cascaded dynamic logic gates. The circuit also includes a first flip-flop that is coupled to provide input signal(s) to the first dynamic logic gate of the cascade and a second flip-flop that is coupled to receive output signal(s) from the last dynamic logic gate of the cascade. The clocking system provides a first clock phase to the first dynamic logic gate, a second clock phase to the second dynamic logic gate and so on. A timing analysis is performed of each logic path in the circuit to determine the arrival time of each critical input signals to each dynamic logic gate. The delay between adjacent clock phase is then predetermined so that each dynamic logic gate enters its evaluation phase before the critical input signal(s) to the particular dynamic logic gate arrives. This adjustment of the clock phases maximizes the logic evaluation speed of the dynamic logic circuit.
    • 与多米诺式动态逻辑一起使用的非阻塞多相时钟系统为包括多个级联动态逻辑门的电路提供具有重叠评估阶段的时钟相位。 电路还包括第一触发器,其被耦合以向级联的第一动态逻辑门提供输入信号;以及第二触发器,其被耦合以从最后的动态逻辑门接收输出信号 的级联。 时钟系统向第一动态逻辑门提供第一时钟相位,向第二动态逻辑门等提供第二时钟相位。 对电路中的每个逻辑路径进行定时分析,以确定每个关键输入信号到达每个动态逻辑门的到达时间。 然后预定相邻时钟相位之间的延迟,使得每个动态逻辑门在特定动态逻辑门的关键输入信号到达之前进入其评估阶段。 时钟相位的这种调整使动态逻辑电路的逻辑评估速度最大化。
    • 5. 发明授权
    • Method for generating non-blocking delayed clocking signals for domino
logic
    • 用于产生用于多米诺骨牌逻辑的非阻塞延迟时钟信号的方法
    • US5983013A
    • 1999-11-09
    • US884840
    • 1997-06-30
    • Alan C. RogersEdgardo F. KlassChaim AmirJason M. Hart
    • Alan C. RogersEdgardo F. KlassChaim AmirJason M. Hart
    • G06F1/06H03K19/096G06F1/04H03K19/00
    • G06F1/06H03K19/0963
    • A method for generating non-blocking multiple-phase clocking system for use with domino-type dynamic logic includes receiving a primary clock signal and generating several delayed phases of the received primary clock signal. The number of clock phases equals the number of dynamic logic gates in the circuit. The method provides a first clock phase to the first dynamic logic gate of the circuit, a second clock phase to the second dynamic logic gate and so on. A timing analysis is performed of each logic path in the circuit to determine the arrival time of each critical input signals to each dynamic logic gate. The delay between adjacent clock phase is then predetermined so that each dynamic logic gate enters its evaluation phase before the critical input signal(s) to the particular dynamic logic gate arrives. This adjustment of the clock phases maximizes the logic evaluation speed of the dynamic logic circuit.
    • 一种用于产生与多米诺式动态逻辑一起使用的无阻塞多相时钟系统的方法包括接收主时钟信号并产生接收的主时钟信号的几个延迟相位。 时钟相位的数量等于电路中动态逻辑门的数量。 该方法为电路的第一动态逻辑门提供第一时钟相位,向第二动态逻辑门等提供第二时钟相位。 对电路中的每个逻辑路径进行定时分析,以确定每个关键输入信号到达每个动态逻辑门的到达时间。 然后预定相邻时钟相位之间的延迟,使得每个动态逻辑门在特定动态逻辑门的关键输入信号到达之前进入其评估阶段。 时钟相位的这种调整使动态逻辑电路的逻辑评估速度最大化。
    • 6. 发明授权
    • Single-phase edge-triggered dual-rail dynamic flip-flop
    • 单相边沿触发双轨动态触发器
    • US5920218A
    • 1999-07-06
    • US710692
    • 1996-09-19
    • Edgardo F. KlassChaim Amir
    • Edgardo F. KlassChaim Amir
    • H03K3/356H03K3/37
    • H03K3/356121
    • A single phase edge-triggered dual-rail dynamic flip-flop circuit for use with dynamic logic gates includes an input stage, precharge stage and buffer. The input stage is coupled to receive a data-input signal and a clock signal. During the precharge phase, the input stage provides an output signal that is the complement of the data input signal. When the data input signal is provided by a dynamic logic gate, the input stage output signal is precharged to a logic high level. During the evaluation phase, the input stage generates an output signal that either remains at a logic high level or else transitions from high-to-low. The precharge stage receives the output signal from the input stage and the clock signal. During the precharge phase, the precharge stage generates a logic high level output signal independently of the signal received from the input stage. However, the logic high level signal from the input stage turns on hard a n-channel transistor in the precharge stage, which minimizes the delay through the precharge stage during the evaluation phase. During the evaluation phase, the precharge stage outputs the complement of the output signal received from the input stage. The buffer is coupled to receive the output signal from the precharge stage. During both the precharge and evaluation phases, the buffer outputs the complement of the output signal received from the precharge stage.
    • 用于动态逻辑门的单相边沿触发双轨动态触发器电路包括输入级,预充电级和缓冲器。 输入级被耦合以接收数据输入信号和时钟信号。 在预充电阶段期间,输入级提供作为数据输入信号的补码的输出信号。 当数据输入信号由动态逻辑门提供时,输入级输出信号被预充电到逻辑高电平。 在评估阶段期间,输入级产生一个输出信号,保持在逻辑高电平或从高到低转换。 预充电阶段接收来自输入级的输出信号和时钟信号。 在预充电阶段期间,预充电阶段独立于从输入级接收的信号产生逻辑高电平输出信号。 然而,来自输入级的逻辑高电平信号在预充电阶段打开硬通道n沟道晶体管,这在评估阶段期间通过预充电阶段的延迟最小化。 在评估阶段,预充电阶段输出从输入级接收的输出信号的补码。 缓冲器被耦合以从预充电阶段接收输出信号。 在预充电和评估阶段期间,缓冲器输出从预充电阶段接收的输出信号的补码。
    • 8. 发明授权
    • Edge-triggered dual-rail dynamic flip-flop with self-shut-off mechanism
    • 边缘触发双轨动态触发器,具有自我关闭机制
    • US5825224A
    • 1998-10-20
    • US688057
    • 1996-07-29
    • Edgardo F. KlassDavid W. PooleChaim AmirRaymond A. Heald
    • Edgardo F. KlassDavid W. PooleChaim AmirRaymond A. Heald
    • H03K3/037H03K3/356H03K3/37
    • H03K3/037H03K3/356139
    • A dynamic flip-flop includes a first input latch coupled to receive a data input signal and a second input latch coupled to receive the complement of the data put signal. The first and second input latches have first and second shutoff circuits, respectively. During a precharge phase, the first and second input latches each provide an output signal of a first logic level. During an evaluation phase, the first and second input latches sample the data input signal and complemented data input signal, respectively. In response to the samples of true and the complement of the data input signal, one input latch's output signal will transition to a second logic level, while the other input latch's output signal will remain at the first logic level. A first output latch and a second output latch are coupled to receive the output signals of the first and second input latches, respectively. The first and second output latches are inverting. During the precharge phase, the flip-flop provides output signals of the second logic level from both of the output latches. During the evaluation phase, one output latch will continue to provide an output signal of the second logic level and the other output latch will provide an output signal that transitions from the second logic level to the first logic level.
    • 动态触发器包括耦合以接收数据输入信号的第一输入锁存器和耦合以接收数据置放信号的补码的第二输入锁存器。 第一和第二输入锁存器分别具有第一和第二截止电路。 在预充电阶段期间,第一和第二输入锁存器都提供第一逻辑电平的输出信号。 在评估阶段期间,第一和第二输入锁存器分别对数据输入信号和补码数据输入信号进行采样。 响应于数据输入信号的真实和补码的样本,一个输入锁存器的输出信号将转换到第二逻辑电平,而另一个输入锁存器的输出信号将保持在第一逻辑电平。 第一输出锁存器和第二输出锁存器分别耦合以接收第一和第二输入锁存器的输出信号。 第一和第二输出锁存器正在反相。 在预充电阶段期间,触发器从两个输出锁存器提供第二逻辑电平的输出信号。 在评估阶段期间,一个输出锁存器将继续提供第二逻辑电平的输出信号,另一个输出锁存器将提供从第二逻辑电平转换到第一逻辑电平的输出信号。
    • 9. 发明授权
    • Apparatus and method for inserting repeaters into a complex integrated circuit
    • 将中继器插入复杂集成电路的装置和方法
    • US06463574B1
    • 2002-10-08
    • US09329552
    • 1999-06-10
    • Julian CuletuChaim Amir
    • Julian CuletuChaim Amir
    • G06F1750
    • G06F17/505
    • A method of inserting repeaters into a complex integrated circuit includes the step of selecting, based upon signal transition data, a maximum wire length to be positioned between two repeaters in a complex integrated circuit. The maximum wire length is then correlated with a signal transition-based ratio coefficient defining the relation between a signal transition time and a Resistive-Capacitive delay. A signal transition-based Resistive-Capacitive delay is then defined based upon the signal transition-based ratio coefficient. A repeater distribution is then mapped within the complex integrated circuit based upon the signal transition-based Resistive-Capacitive delay.
    • 将中继器插入到复杂集成电路中的方法包括基于信号转换数据选择要在复合集成电路中的两个中继器之间定位的最大线长度的步骤。 然后,最大导线长度与限定信号转变时间和电阻 - 电容延迟之间的关系的基于信号跃迁的比率系数相关。 然后基于基于信号转换的比率系数来定义基于信号转换的电阻 - 电容延迟。 然后,基于基于信号转换的电阻电容延迟,在复合集成电路内映射中继器分布。
    • 10. 发明授权
    • Dual rail dynamic flip-flop with single evaluation path
    • 双轨动态触发器,具有单路评估路径
    • US06265923B1
    • 2001-07-24
    • US09543372
    • 2000-04-02
    • Chaim AmirGin S. Yee
    • Chaim AmirGin S. Yee
    • H03K3037
    • H03K3/356165H03K3/037H03K3/356121H03K19/01855
    • A dynamic flip-flop circuit that operates in a pre-charge phase and an evaluation phase allows for implementation of multiple-input logic functions without sacrificing performance by using a single evaluation path to generate its output signals. In one embodiment, the dynamic flip-flop circuit includes input logic that receives a clock signal and one or more data input signals. The clock signal defines the pre-charge phase and the evaluation phase of the flip-flop circuit. The input logic has an output terminal connected to a first output buffer circuit, which in turn drives the flip-flop circuit's Q output signal. The output terminal of the input logic is combined with the clock signal in a logic gate having an output terminal connected to a second output buffer circuit, which in turn drives the flip-flop circuit's complementary output signal {overscore (Q)}. During the pre-charge phase, the input logic forces the Q output signal to a first logic state via the first output buffer, and the logic gate forces the {overscore (Q)} output signal to logic low via the second output buffer. During the evaluation phase, the input logic generates a logic signal in response to a predetermined logic function of its one or more input signals. The logic signal(s), in turn, drives the Q output signal via the first output buffer, and drives the {overscore (Q)} output signal to a complementary logic state via the logic gate and second output buffer.
    • 在预充电阶段和评估阶段工作的动态触发器电路允许实现多输入逻辑功能,而不会通过使用单个评估路径来产生其输出信号而牺牲性能。 在一个实施例中,动态触发器电路包括接收时钟信号和一个或多个数据输入信号的输入逻辑。 时钟信号定义了触发器电路的预充电阶段和评估阶段。 输入逻辑具有连接到第一输出缓冲电路的输出端子,其继而驱动触发器电路的Q输出信号。 输入逻辑的输出端与具有连接到第二输出缓冲电路的输出端的逻辑门中的时钟信号相组合,其继而驱动触发器电路的互补输出信号(过滤(Q)})。 在预充电阶段期间,输入逻辑经由第一输出缓冲器将Q输出信号强制为第一逻辑状态,逻辑门通过第二输出缓冲器迫使{overscore(Q)}输出信号为逻辑低电平。 在评估阶段期间,输入逻辑响应于其一个或多个输入信号的预定逻辑功能产生逻辑信号。 逻辑信号又通过第一输出缓冲器驱动Q输出信号,并通过逻辑门和第二输出缓冲器将{overscore(Q)}输出信号驱动到互补逻辑状态。