会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR FINDING THE FILLING RATE OR THE POROSITY OF POWDER
    • 用于发现填充速率或粉末的孔隙度的方法
    • US20130013271A1
    • 2013-01-10
    • US13192847
    • 2011-07-28
    • Yutaka Aikawa
    • Yutaka Aikawa
    • G06F17/10
    • C04B20/0076
    • The size distribution f(r) of powder particles is found, and the packing rate p of the powder particles is found based on the size distribution f(r) according to the following formula (a): p = ∑ i   ∑ j   r i 2  r j 3  f  ( r i )  f  ( r j ) 〈 r 2 〉  〈 r 3 〉  p ji  ( max ) ( a ) where f(ri): a frequency of i-particles having a radius of ri contained in the powder particles, f(rj): a frequency of j-particles having a radius of rj contained in the powder particles, ri: the radius of the i-particles contained in the powder particles, rj: the radius of the j-particles contained in the powder particles, 〈 r 2 〉 : ∑ i   r i 2  f  ( r i ) 〈 r 3 〉 : ∑ i   r i 3  f  ( r i ) pji(max): a void fraction in a hypothetical sphere having a radius of rj+ri around a j-particle having a radius of rj when the j-particle has i-particles most closely packed therearound so as be brought into contact therewith.
    • 发现粉末颗粒的尺寸分布f(r),粉末颗粒的填充率p基于根据以下公式(a)的尺寸分布f(r)来找到:p =Σi吐布Σj (i)其中f(ri):i粒子的频率(r)(rj) f(rj):包含在粉末颗粒中的具有rj半径的j-粒子的频率,ri:包含在粉末颗粒中的i粒子的半径,rj: 包含在粉末颗粒中的j-颗粒的半径,其中:(i)r(r i) ):当j-粒子具有最紧密包装的i粒子与其接触时,在具有半径rj的j-粒子周围具有半径rj + ri的假想球体中的空隙部分。
    • 2. 发明授权
    • Method for finding the filling rate or the porosity of powder
    • 找到粉末填充率或孔隙度的方法
    • US08635050B2
    • 2014-01-21
    • US13192847
    • 2011-07-28
    • Yutaka Aikawa
    • Yutaka Aikawa
    • G06F7/60
    • C04B20/0076
    • The size distribution f(r) of powder particles is found, and the packing rate p of the powder particles is found based on the size distribution f(r) according to the following formula (a): p = ∑ i ⁢ ⁢ ∑ j ⁢ ⁢ r i 2 ⁢ r j 3 ⁢ f ⁡ ( r i ) ⁢ f ⁡ ( r j ) 〈 r 2 〉 ⁢ 〈 r 3 〉 ⁢ p ji ⁡ ( max ) ( a ) where f(ri): a frequency of i-particles having a radius of ri contained in the powder particles, f(rj): a frequency of j-particles having a radius of rj contained in the powder particles, ri: the radius of the i-particles contained in the powder particles, rj: the radius of the j-particles contained in the powder particles, 〈 r 2 〉 : ∑ i ⁢ ⁢ r i 2 ⁢ f ⁡ ( r i ) 〈 r 3 〉 : ∑ i ⁢ ⁢ r i 3 ⁢ f ⁡ ( r i ) pji(max): a void fraction in a hypothetical sphere having a radius of rj+ri around a j-particle having a radius of rj when the j-particle has i-particles most closely packed therearound so as be brought into contact therewith.
    • 发现粉末颗粒的尺寸分布f(r),根据下式(a),根据尺寸分布f(r)求出粉末颗粒的填充率ρ:p =Σi ugΣj (ri)f⁡(rj) r3> p ji⁡(max)(a)其中f(ri):i粒子的频率 f(rj):包含在粉末颗粒中的具有rj半径的j-粒子的频率,ri:包含在粉末颗粒中的i粒子的半径,rj: 包含在粉末颗粒中的j-粒子的半径:Σ i&eti; 2 f(ri)< r 3>:Σ i(t) ):当j-粒子具有最紧密包装的i粒子与其接触时,在具有半径rj的j-粒子周围具有半径rj + ri的假想球体中的空隙部分。
    • 3. 发明授权
    • Electronic component supply apparatus
    • 电子元件供应装置
    • US06264061B1
    • 2001-07-24
    • US09243790
    • 1999-02-03
    • Kikuji FukaiKoji SaitoTaro YasudaYutaka Aikawa
    • Kikuji FukaiKoji SaitoTaro YasudaYutaka Aikawa
    • B23Q712
    • H05K13/028
    • A supply apparatus for prism-shaped chip components has two relatively movable taking-in members. When the members move relative to each other, flat surfaces thereof contact each other and a parallel space is formed between the upper portions of the two taking-in members. Relative movement of the two talking-in members causes the components in a storage chamber to enter the parallel space between the upper portions of the two taking-in members. The components entering the parallel space have the same thickness-wise orientation and are lengthwise in a supply passageway in a one by one in a state. The components move downward by gravity in the supply passageway and then in a discharge passageway.
    • 用于棱柱形芯片部件的供应装置具有两个相对可移动的接纳部件。 当构件相对于彼此移动时,其平坦表面彼此接触,并且在两个取入构件的上部之间形成平行的空间。 两个通话部件的相对运动导致存储室中的部件进入两个取入部件的上部之间的平行空间。 进入平行空间的部件具有相同的厚度方向,并且在一个一个状态下在供给通道中纵向延伸。 部件通过供给通道中的重力向下移动,然后在排放通道中移动。