会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for forming flowable dielectric layer in semiconductor device
    • 在半导体器件中形成可流动介电层的方法
    • US20050020063A1
    • 2005-01-27
    • US10746069
    • 2003-12-24
    • Yong-Sun Sohn
    • Yong-Sun Sohn
    • H01L21/31H01L21/768H01L21/44
    • H01L21/76825H01L21/76822H01L21/76837
    • The method for forming a flowable dielectric layer without micro-voids therein in a semiconductor device is employed to utilize a ultra-violet (UV) bake process. The method includes steps of: forming a plurality of patterns on a semiconductor substrate, wherein narrow and deep gaps are formed therebetween; forming a flowable dielectric layer so as to fill the gaps between the patterns; carrying out a baking process for densifying the flowable dielectric layer from a bottom face thereof; forming a plurality of contact holes by selectively etching the flowable dielectric layer; carrying out a pre-cleaning process in order to remove native oxide and impurity substances on the contact holes; and forming a plurality of contact plugs by filling a conductive material into the contact holes.
    • 采用在半导体器件中形成其中没有微孔的可流动介电层的方法来利用紫外线(UV)烘烤工艺。 该方法包括以下步骤:在半导体衬底上形成多个图案,其间形成有窄而深的间隙; 形成可流动的电介质层,以填充图案之间的间隙; 进行从其底面致密化可流动介电层的烘烤工艺; 通过选择性地蚀刻可流动介电层形成多个接触孔; 进行预清洁处理以去除接触孔上的天然氧化物和杂质; 以及通过将导电材料填充到所述接触孔中而形成多个接触插塞。
    • 3. 发明授权
    • Method for fabricating semiconductor device with ultra-shallow super-steep-retrograde epi-channel by decaborane doping
    • 通过十硼烷掺杂制造具有超浅超陡逆向外延通道的半导体器件的方法
    • US06753230B2
    • 2004-06-22
    • US10330087
    • 2002-12-30
    • Yong-Sun SohnSung-Jae Joo
    • Yong-Sun SohnSung-Jae Joo
    • H01L22336
    • H01L29/66651H01L21/26513H01L21/823807H01L21/823892H01L29/105H01L29/365
    • The present invention provides a method for fabricating a semiconductor device with ultra-shallow super-steep-retrograde epi-channel that is able to overcome limitedly useable energies and to enhance manufacturing productivity than using ultra low energy ion implantation technique that has disadvantage of difficulties to get the enough ion beam current as well as that of prolonged processing time. The inventive method includes the steps of: a method for fabricating a semiconductor device with ultra shallow super-steep-retrograde (hereinafter referred as to SSR) epi-channel, comprising the steps of: forming a channel doping layer below a surface of a semiconductor substrate by implanting decaborane; forming an epi-layer on the channel doping layer; forming sequentially a gate dielectric layer and a gate electrode on the epi-layer; forming source/drain extension areas shallower than the channel doping layer by being aligned at edges of the gate electrode; forming a spacers on lateral sides of the gate electrode; and forming source/drain areas deeper than the channel doping layer by being aligned at edges of the spacer through ion implantation onto the substrate.
    • 本发明提供了一种制造具有超浅超陡逆转外延通道的半导体器件的方法,其能够克服有限可用能量并提高制造生产率,而不是使用具有难以达到的难度的超低能量离子注入技术 获得足够的离子束电流以及长时间的处理时间。 本发明的方法包括以下步骤:制造具有超浅超陡逆行(下文称为SSR)外延通道的半导体器件的方法,包括以下步骤:在半导体的表面下方形成沟道掺杂层 底物植入十硼烷; 在沟道掺杂层上形成外延层; 在外延层上依次形成栅介质层和栅电极; 通过在栅电极的边缘对准,形成比沟道掺杂层浅的源极/漏极延伸区域; 在栅电极的侧面上形成间隔物; 以及通过在衬底上通过离子注入在间隔物的边缘处对准在沟道掺杂层之上形成源极/漏极区域。
    • 4. 发明授权
    • Method for fabricating semiconductor device with ultra-shallow super-steep-retrograde epi-channel by boron-fluoride compound doping
    • 通过硼氟化合物掺杂制造具有超浅超陡逆向外延通道的半导体器件的方法
    • US06730568B2
    • 2004-05-04
    • US10330437
    • 2002-12-30
    • Yong-Sun Sohn
    • Yong-Sun Sohn
    • H01L21336
    • H01L21/823807
    • This invention relates to a method for fabricating a semiconductor device with the epi-channel structure, which is adapted to overcome an available energy limitation and to improve the productivity by providing the method of SSR epi Channel doping by boron-fluoride compound ion implantation without using ultra low energy ion implantation and a method for fabricating the semiconductive device with epi-channel structure adapted to prevent the crystal defects caused by the epitaxial growth on ion bombarded and fluorinated channel doping layer. The method for forming the epi-channel of a semiconductor device includes the steps of: forming a channel doping layer below a surface of a semiconductive substrate by implanting boron-fluoride compound ions containing boron; performing an annealing process to remove fluorine ions, injected during above ion implantation, within the channel doping layer; performing the surface treatment process to remove the native oxide layer formed on the surface of the channel doping layer and simultaneously to remove remaining fluorine ions within the channel doping layer; and growing epitaxial layer on the channel doping layer using the selective epitaxial growth method.
    • 本发明涉及一种用于制造具有外延通道结构的半导体器件的方法,其适于克服可用的能量限制并通过提供通过硼氟化合物离子注入的SSR外延通道掺杂的方法来提高生产率,而不使用 超低能量离子注入和用于制造具有外延通道结构的半导体器件的方法,其适于防止由离子轰击和氟化沟道掺杂层引起的外延生长引起的晶体缺陷。 用于形成半导体器件的外延沟道的方法包括以下步骤:通过注入含硼的氟化硼化合物离子在半导体衬底的表面下方形成沟道掺杂层; 进行退火处理以去除在离子注入期间注入的氟离子在沟道掺杂层内; 进行表面处理工序以除去形成在沟道掺杂层的表面上的自然氧化物层,同时除去沟道掺杂层内剩余的氟离子; 以及使用选择性外延生长方法在沟道掺杂层上生长外延层。
    • 6. 发明授权
    • pMOS device having ultra shallow super-steep-retrograde epi-channel with dual channel doping and method for fabricating the same
    • 具有双通道掺杂的超浅超陡逆向外延通道的pMOS器件及其制造方法
    • US06881987B2
    • 2005-04-19
    • US10616625
    • 2003-07-10
    • Yong-Sun Sohn
    • Yong-Sun Sohn
    • H01L21/265H01L21/324H01L21/8238H01L29/10H01L29/78H01L31/0328H01L21/336H01L31/0336H01L31/072H01L31/109
    • H01L29/1033H01L21/26513H01L21/324H01L21/823807H01L21/823842H01L29/7833
    • The present invention provides a p-channel metal-oxide-semiconductor (pMOS) device having an ultra shallow epi-channel satisfying a high doping concentration required for a device of which gate length is about 30 nm even without using a HALO doping layer and a method for fabricating the same. The pMOS device includes: a semiconductor substrate; a channel doping layer being formed in a surface of the semiconductor substrate and being dually doped with dopants having different diffusion rates; a silicon epi-layer being formed on the channel doping layer, whereby constructing an epi-channel along with the channel doping layer; a gate insulating layer formed on the silicon epi-layer; a gate electrode formed on the gate insulating layer; a source/drain extension region highly concentrated and formed in the semiconductor substrate of lateral sides of the epi-channel; and a source/drain region electrically connected to the source/drain extension region and deeper than the source/drain region.
    • 本发明提供一种p沟道金属氧化物半导体(pMOS)器件,其具有满足栅极长度约为30nm的器件所需的高掺杂浓度的超浅外延波长,即使不使用HALO掺杂层和 其制造方法 pMOS器件包括:半导体衬底; 沟道掺杂层形成在半导体衬底的表面中并被掺杂有不同扩散速率的掺杂剂; 在沟道掺杂层上形成硅外延层,由此与沟道掺杂层一起构成外延沟道; 形成在硅外延层上的栅极绝缘层; 形成在所述栅极绝缘层上的栅电极; 源极/漏极延伸区域,其高度集中并形成在外延通道的侧面的半导体衬底中; 以及源极/漏极区域,其电连接到源极/漏极延伸区域并且比源极/漏极区域更深。
    • 7. 发明申请
    • PARTIAL IMPLANTATION METHOD FOR SEMICONDUCTOR MANUFACTURING
    • 半导体制造的部分植入方法
    • US20100099244A1
    • 2010-04-22
    • US12646196
    • 2009-12-23
    • Kyoung Bong RouhYong Sun SohnMin Yong Lee
    • Kyoung Bong RouhYong Sun SohnMin Yong Lee
    • H01L21/265
    • H01L21/265H01L21/26513
    • Disclosed herein is a partial implantation method for manufacturing semiconductor devices. The method involves implantation of dopant ions at different densities into a plurality of wafer regions, including first and second regions, defined in a wafer by means of a boundary line. In the method, first, second and third implantation zones are defined. The first implantation zone is the remaining part of the first region except for a specific part of the first region close to the boundary line, the second implantation zone is the remaining part of the second region except for a specific part of the second region close to the boundary line, and the third implantation zone is the remaining part of the wafer except for the first and second implantation zones. Then, dopant ions are implanted into the first implantation zone at a first density, into the second implantation zone at a second density different from the first density, and into the third implantation zone at a third density that is a midway value between the first and second densities.
    • 这里公开了用于制造半导体器件的部分注入方法。 该方法包括将不同密度的掺杂剂离子注入到通过边界线限定在晶片中的多个晶片区域,包括第一和第二区域。 在该方法中,限定了第一,第二和第三植入区。 第一植入区域是第一区域的剩余部分,除了靠近边界线的第一区域的特定部分之外,第二植入区域是第二区域的剩余部分,除了靠近第二区域的第二区域的特定部分 边界线和第三植入区域是除了第一和第二植入区域之外的晶片的剩余部分。 然后,掺杂剂离子以第一密度注入第一注入区,以不同于第一密度的第二密度注入第二注入区,并以第三密度进入第三注入区,第三密度是第一和第 第二密度。
    • 8. 发明授权
    • Partial implantation method for semiconductor manufacturing
    • 半导体制造部分植入法
    • US07662705B2
    • 2010-02-16
    • US11197091
    • 2005-08-04
    • Kyoung Bong RouhYong Sun SohnMin Yong Lee
    • Kyoung Bong RouhYong Sun SohnMin Yong Lee
    • H01L21/00H01L21/425G21K5/10
    • H01L21/265H01L21/26513
    • Disclosed herein is a partial implantation method for manufacturing semiconductor devices. The method involves implantation of dopant ions at different densities into a plurality of wafer regions, including first and second regions, defined in a wafer by means of a boundary line. In the method, first, second and third implantation zones are defined. The first implantation zone is the remaining part of the first region except for a specific part of the first region close to the boundary line, the second implantation zone is the remaining part of the second region except for a specific part of the second region close to the boundary line, and the third implantation zone is the remaining part of the wafer except for the first and second implantation zones. Then, dopant ions are implanted into the first implantation zone at a first density, into the second implantation zone at a second density different from the first density, and into the third implantation zone at a third density that is a midway value between the first and second densities.
    • 这里公开了用于制造半导体器件的部分注入方法。 该方法包括将不同密度的掺杂剂离子注入到通过边界线限定在晶片中的多个晶片区域,包括第一和第二区域。 在该方法中,限定了第一,第二和第三植入区。 第一植入区域是第一区域的剩余部分,除了靠近边界线的第一区域的特定部分之外,第二植入区域是第二区域的剩余部分,除了靠近第二区域的第二区域的特定部分 边界线和第三植入区域是除了第一和第二植入区域之外的晶片的剩余部分。 然后,将掺杂剂离子以第一密度注入到第一注入区中,以不同于第一密度的第二密度注入第二注入区,并以第三密度进入第三注入区,该第三密度是第一和第 第二密度。
    • 10. 发明授权
    • Method for forming transistor of semiconductor device
    • 半导体器件晶体管形成方法
    • US06667200B2
    • 2003-12-23
    • US10331265
    • 2002-12-30
    • Yong Sun SohnChang Woo RyooJeong Youb Lee
    • Yong Sun SohnChang Woo RyooJeong Youb Lee
    • H01L218238
    • H01L21/28185H01L21/28202H01L21/823807H01L29/105H01L29/365H01L29/66651
    • A method for forming a transistor of a semiconductor device, including the step of forming channel layers of a first and a second conductive types, performing high temperature thermal process to form stabilized channel layers and forming an epitaxial channel structure having a super-steep-retrograde &dgr;-doped layer by growing undoped silicon epitaxial layers, treating the entire surface of the resulting structure with hydrogen, forming an epitaxial channel structure by growing undoped silicon epitaxial layers on the stabilized channel layers, forming gate insulating films and gate electrodes on the epitaxial channel structures, re-oxidizing the gate insulating films for repairing damaged portions of the gate insulating films; and forming a source/drain region and performing a low temperature thermal process.
    • 一种形成半导体器件的晶体管的方法,包括形成第一和第二导电类型的沟道层的步骤,进行高温热处理以形成稳定的沟道层并形成具有超陡逆向的外延沟道结构 通过生长未掺杂的硅外延层,用氢处理所得结构的整个表面,通过在稳定的沟道层上生长未掺杂的硅外延层,形成外延沟道结构,在外延沟道上形成栅极绝缘膜和栅电极 结构,重新氧化栅极绝缘膜,以修复栅极绝缘膜的损坏部分; 以及形成源极/漏极区域并进行低温热处理。