会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Two-dimensional phase locked semiconductor laser array
    • 二维锁相半导体激光阵列
    • US4730325A
    • 1988-03-08
    • US840620
    • 1986-03-17
    • Weng W. Chow
    • Weng W. Chow
    • H01S5/18H01S5/42H01S3/19H01S3/08
    • H01S5/42H01S5/18
    • A phase locked two-dimensional semiconductor laser array is disclosed that emits a unified wavefront using columns of individual lasers, each laser having a slant mirror between it and other lasers in its column. The individual lasers are all evanescently coupled to the neighboring lasers. The slant mirrors reflect the light from the lasers next to it upwards out of the face of the array. The phase locking is accomplished by the evanescent wave coupling. The plane (uniform) wavefront is accomplished by the design of the array in which: each laser in an i.sup.th column forms an optical path length of x.sub.i with the slant mirror adjacent to it; and the optical path length between mirrors and lasers in the (i+l).sup.th column is given by: x.sub.i =x.sub.i+l .+-.n(.lambda./2) where .lambda. equals a measure of wavelength of the light transmitted out of the array, and n is an odd integer.
    • 公开了一种锁相二维半导体激光器阵列,其使用各个激光器列发射统一的波阵面,每个激光器在其与列中的其它激光器之间具有倾斜镜。 单个激光器全部消逝地耦合到相邻的激光器。 倾斜的镜子将来自激光器的光反射到阵列的表面之上。 相位锁定是通过ev逝波耦合实现的。 平面(均匀)波前通过阵列的设计来实现,其中:第i列中的每个激光器与邻近其的倾斜镜形成xi的光程长度; 并且第(i + 1)列中的反射镜和激光器之间的光程长度由下式给出:xi = xi + 1 +/- n(λ/ 2)其中λ等于从阵列传输的光的波长的量度 ,n为奇整数。
    • 5. 发明授权
    • Light sources based on semiconductor current filaments
    • 基于半导体电流灯丝的光源
    • US06504859B1
    • 2003-01-07
    • US09489243
    • 2000-01-21
    • Fred J. ZutavernGuillermo M. LoubrielMalcolm T. ButtramAlan MarWesley D. HelgesonMartin W. O'MalleyHarold P. HjalmarsonAlbert G. BacaWeng W. ChowG. Allen Vawter
    • Fred J. ZutavernGuillermo M. LoubrielMalcolm T. ButtramAlan MarWesley D. HelgesonMartin W. O'MalleyHarold P. HjalmarsonAlbert G. BacaWeng W. ChowG. Allen Vawter
    • H01S500
    • H01S5/04H01S5/0425H01S5/3013
    • The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.
    • 本发明提供一种能够产生高峰值功率输出而不是注入,电子束或光泵浦的新型半导体光源。 本发明能够产生高质量的相干或非相干光发射。 不同于基于p-n结的常规半导体激光器,本发明基于当前的灯丝。 本发明提供一种由当前灯丝内的电子 - 空穴等离子体形成的光源。 电子空穴等离子体可以是几百微米的直径和几厘米长。 目前的灯丝可以光学地或与电子束一起启动,但是可以在大的绝缘区域上被电泵浦。 可以在高增益光导半导体开关中产生当前的灯丝。 由本发明提供的光源具有潜在的大体积,因此具有从单个(相干)半导体激光器可获得的每脉冲潜在的大能量或峰值功率。 像其他半导体激光器一样,这些光源将发射在带隙能量附近的波长(对于GaAs 875nm或近红外线)。 本发明的即时潜在应用包括高能量,短脉冲,紧凑,低成本的激光器和其它非相干光源。
    • 7. 发明授权
    • Temperature-insensitive vertical-cavity surface-emitting lasers and
method for fabrication thereof
    • 不敏感的垂直腔表面发射激光器及其制造方法
    • US5712865A
    • 1998-01-27
    • US535597
    • 1995-09-28
    • Weng W. ChowKent D. ChoquettePaul L. Gourley
    • Weng W. ChowKent D. ChoquettePaul L. Gourley
    • H01S5/068H01S5/183H01S5/34H01S5/343H01S3/19
    • B82Y20/00H01S5/18308H01S2301/04H01S5/02469H01S5/1221H01S5/2213H01S5/3418H01S5/3432
    • A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n.gtoreq.2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n.gtoreq.2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum.
    • 不敏感的垂直腔表面发射激光器(VCSEL)及其制造方法。 温度不敏感的VCSEL包括在谐振腔内的量子阱有源区域,有源区域具有增益谱,具有对其增益和平坦化增益谱的高阶子带(n> / = 2)贡献,从而大大减少 VCSEL在感兴趣的温度范围内的工作特性的任何变化。 用于形成温度不敏感VCSEL的方法包括以下步骤:提供衬底并在其上形成多个层以提供第一和第二分布布拉格反射镜(DBR)反射镜叠层,其中夹在其间的有源区域,该有源区域包括至少一个 提供具有高阶子带(n> / = 2)增益贡献的增益谱的量子阱层,以及具有预定层组成和厚度的DBR反射镜叠层,用于在与增益光谱基本重叠的预定波长范围内提供空腔谐振 。