会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • GNSS signal processing methods and apparatus with ambiguity selection
    • 具有歧义选择的GNSS信号处理方法和装置
    • US08830121B2
    • 2014-09-09
    • US13059463
    • 2009-08-05
    • Ulrich Vollath
    • Ulrich Vollath
    • G01S19/44
    • G01S19/44
    • Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of a GNSS signal from each of a plurality of GNSS satellites are obtained (4120). The observations are fed to a filter having a state vector at least comprising a float ambiguity for each received frequency of the GNSS signals, each float ambiguity constituting a real number estimate associated with an integer number of wavelengths of the GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received, and the filter being for estimating a float value for each float ambiguity of the state vector (4140). A subset of float ambiguities of the state vector is selected (4150). Integer values are assigned to the estimated float values of the float ambiguities of the subset to define a plurality of integer ambiguity candidate sets (4160). A quality measure is determined for each of the candidate sets. A weighted average of the candidate sets is formed (4200). Ambiguities of the weighted average can be used in subsequent operations to aid in determining a position of the receiver or can be used to prepare data, e.g., in a network processor that can be used to augment position information of a rover.
    • 提供了用于估计从GNSS信号导出的参数,即模糊度的方法和装置。 获得来自多个GNSS卫星中的每一个的GNSS信号的观察(4120)。 将观测值馈送到具有对于GNSS信号的每个接收频率至少包括浮点模糊度的状态向量的滤波器,每个浮点模糊度构成与在GNSS信号的接收机之间的GNSS信号的整数个波长相关联的实数估计 GNSS信号和从其接收的GNSS卫星,并且所述滤波器用于估计所述状态向量(4140)的每个浮点模糊度的浮点值。 选择状态向量的浮点模糊度的子集(4150)。 将整数值分配给子集的浮点模糊度的估计浮点值,以定义多个整数模糊度候选集(4160)。 确定每个候选组的质量度量。 形成候选集的加权平均值(4200)。 可以在随后的操作中使用加权平均值的不确定性来帮助确定接收机的位置,或者可以用于准备数据,例如在网络处理器中,该网络处理器可用于增加流动站的位置信息。
    • 3. 发明授权
    • GNSS signal processing methods and apparatus with tracking interruption
    • 具有跟踪中断的GNSS信号处理方法和装置
    • US08704709B2
    • 2014-04-22
    • US13059428
    • 2009-08-05
    • Ulrich VollathNicholas Charles Talbot
    • Ulrich VollathNicholas Charles Talbot
    • G01S19/44
    • G01S19/44
    • Methods and apparatus are provided for estimating parameters, i.e. ambiguities, derived from GNSS signals. Observations of each of received frequencies of a GNSS signal from a plurality of GNSS satellites are obtained for a plurality of instances in time (3120). The time sequence of observations is fed to a filter to estimate a state vector comprising float ambiguities, wherein each float ambiguity constitutes a non integer estimate of an integer number of wavelengths for a received frequency of a GNSS signal between a receiver of the GNSS signal and the GNSS satellite from which it is received and wherein the float ambiguities of the state vector are updated over time on the basis of the observations (3140). The occurrence of an interruption in tracking of at least one signal of a satellite is determined (3121). The float ambiguity of the state vector for the at least one signal for which an interruption in tracking occurred is maintained at the value before the interruption in tracking occurred (3122). Integer values are assigned to at least a subgroup of the estimated float values to define a plurality of integer ambiguity candidate sets (3160). A quality measure is determined for each of the candidate sets. A weighted average of the candidate sets is formed (3200). Ambiguities of the weighted average can be used in subsequent operations to aid in determining a position of the receiver or can be used to prepare data, e.g., in a network processor that can be used to augment position information of a rover.
    • 提供了用于估计从GNSS信号导出的参数,即模糊度的方法和装置。 在多个时间(3120)中获得来自多个GNSS卫星的GNSS信号的每个接收频率的观察。 将观测的时间序列馈送到滤波器以估计包括浮点模糊度的状态向量,其中每个浮点模糊度构成GNSS信号的接收机与GNSS信号的接收频率的接收频率的整数个波长的非整数估计,以及 接收GNSS卫星并且其中根据观测值(3140)随时间更新状态向量的浮点模糊度。 确定跟踪卫星的至少一个信号的中断的发生(3121)。 跟踪发生中断的至少一个信号的状态向量的浮点模糊度维持在跟踪发生中断之前的值(3122)。 将整数值分配给估计浮点值的至少一个子组以定义多个整数模糊度候选集(3160)。 确定每个候选组的质量度量。 形成候选集的加权平均值(3200)。 可以在随后的操作中使用加权平均值的不确定性来帮助确定接收机的位置,或者可以用于准备数据,例如在网络处理器中,该网络处理器可用于增加流动站的位置信息。
    • 6. 发明申请
    • GNSS Signal Processing with Regional Augmentation Message
    • GNSS信号处理与区域增强信息
    • US20120306694A1
    • 2012-12-06
    • US13522384
    • 2011-02-14
    • Xiaoming ChenUlrich VollathKendall Ferguson
    • Xiaoming ChenUlrich VollathKendall Ferguson
    • G01S19/07
    • G01S19/04G01S1/00G01S5/14G01S19/02G01S19/07G01S19/32G01S19/40G01S19/41G01S19/43G01S19/44
    • Methods and apparatus for processing of GNSS data derived from multi-frequency code and carrier observations are presented which make available correction data for use by a rover located within the region, the correction data comprising: the ionospheric delay over the region, the tropospheric delay over the region, the phase-leveled geometric correction per satellite, and the at least one code bias per satellite. In some embodiments the correction data includes an ionospheric phase bias per satellite. Methods and apparatus for determining a precise position of a rover located within a region are presented in which a GNSS receiver is operated to obtain multi-frequency code and carrier observations and correction data, to create rover corrections from the correction data, and to determine a precise rover position using the rover observations and the rover corrections. The correction data comprises at least one code bias per satellite, a fixed-nature MW bias per satellite and/or values from which a fixed-nature MW bias per satellite is derivable, and an ionospheric delay per satellite for each of multiple regional network stations and/or non-ionospheric corrections. Methods and apparatus for encoding and decoding the correction messages containing correction data are also presented, in which network messages include network elements related to substantially all stations of the network and cluster messages include cluster elements related to subsets of the network.
    • 提出了用于处理从多频码和载波观测得到的GNSS数据的方法和装置,其使可用的校正数据由位于该区域内的流动站使用,校正数据包括:该区域的电离层延迟,对流层延迟 该区域,每个卫星的相位级几何校正以及每个卫星的至少一个码偏置。 在一些实施例中,校正数据包括每个卫星的电离层相位偏置。 介绍了一种用于确定位于一个区域内的流动站的精确位置的方法和装置,其中操作GNSS接收器以获得多频码和载波观测和校正数据,以从校正数据中产生流动站校正,并确定 使用流动站观测和流动站校正确定流动站的位置。 校正数据包括每个卫星至少一个代码偏置,每个卫星的固定自然MW偏差和/或每个卫星可衍生固定自然MW偏差的值,以及每个卫星对每个多个区域网络站的电离层延迟 和/或非电离层校正。 还提出了用于对包含校正数据的校正消息进行编码和解码的方法和装置,其中网络消息包括与网络的基本上所有站相关的网络元件,并且集群消息包括与网络的子集有关的集群元素。
    • 8. 发明授权
    • Post-processed accuracy prediction for GNSS positioning
    • GNSS定位的后处理精度预测
    • US07982667B2
    • 2011-07-19
    • US12291888
    • 2008-11-14
    • Ulrich VollathSoeren Ulf Klose
    • Ulrich VollathSoeren Ulf Klose
    • G01S19/41G01S19/40G01S19/44G01S19/32
    • G01S19/44G01S19/32
    • Methods and apparatus for processing of data from GNSS receivers are presented. (1) A real-time GNSS rover-engine, a long distance multi baseline averaging (MBA) method, and a stochastic post-processed accuracy predictor are described. (2) The real-time GNSS rover-engine provides high accuracy position determination (decimeter-level) with short occupation time (2 Minutes) for GIS applications. The long distance multi baseline averaging (MBA) method improves differential-correction accuracy by averaging the position results from several different baselines. This technique provides a higher accuracy than any single baseline solution. It was found, that for long baselines (more than about 250 km), the usage of non-iono-free observables (e.g. L1-only or wide-lane) leads to a higher accuracy with MBA compared to the commonly used iono-free (LC) combination, because of the less noisy observables and the cancellation of the residual ionospheric errors. (3) The stochastic post-processed accuracy (SPPA) predictor calculates during data collection an estimate of the accuracy likely to be achieved after post-processing. This helps to optimize productivity when collecting GNSS data for which post-processed accuracy is important. The predictor examines the quality of carrier measurements and estimates how well the post-processed float solution will converge in the time since carrier lock was obtained.
    • 介绍了GNSS接收机处理数据的方法和装置。 (1)描述了实时GNSS漫游者引擎,长距离多基线平均(MBA)方法和随机后处理精度预测器。 (2)实时GNSS漫游者引擎为GIS应用提供了具有短占用时间(2分钟)的高精度位置确定(分米级)。 长距离多基线平均(MBA)方法通过对来自几个不同基线的位置结果进行平均来提高差分校正精度。 该技术提供比任何单一基线解决方案更高的精度。 已经发现,对于长基线(超过约250公里),使用非电离观测值(例如仅L1或宽通道)导致与通常使用的无电离相比较,MBA的准确度更高 (LC)组合,因为较少的可观察性和残留的电离层误差的消除。 (3)随机后处理精度(SPPA)预测器在数据采集期间计算后处理后可能达到的准确度估计。 这有助于在收集后处理精度很重要的GNSS数据时优化生产力。 预测器检查载波测量的质量,并估计后处理的浮点解决方案在获得载波锁定后的时间内将如何收敛。
    • 9. 发明申请
    • GNSS signal processing with clock difference modeling
    • GNSS信号处理与时钟差分建模
    • US20090237298A1
    • 2009-09-24
    • US12384184
    • 2009-03-31
    • Ulrich VollathKenneth Donald Doucet
    • Ulrich VollathKenneth Donald Doucet
    • G01S5/14
    • G01S19/44
    • Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g., for processing signals from GNSS receivers of different manufacturers.
    • 提出了三种新的方法来改进多个全球卫星导航系统(GNSS)的浮动解决方案和模糊度分辨率,其中一种可能是基于FDMA的GNSS,如GLONASS:(1)两个硬件相关的差分时钟误差建模 (或更多)不同的GNSS,(2)对存在于频分多址(FDMA)GNSS中的频率相关偏差进行建模,以及(3)称为记分板部分定位(SPF)的模糊度分辨方法。 所呈现的方法与每个卫星导航系统跟踪的载波频率无关。 他们的应用程序导致更快更可靠的歧义解决。 与已知的算法相比,组合多GNSS观测的好处是以非常有效的方式被利用,这种算法常常导致多个GNSS性能下降。 已经发现频率相关偏压方法对于来自基本不相似的硬件的组合的GNSS观测是有效的,例如用于处理来自不同制造商的GNSS接收器的信号。
    • 10. 发明授权
    • GNSS signal processing with partial fixing of ambiguities
    • GNSS信号处理部分固定模糊
    • US07538721B2
    • 2009-05-26
    • US11983925
    • 2007-11-12
    • Ulrich VollathKenneth Donald Doucet
    • Ulrich VollathKenneth Donald Doucet
    • G01S5/14
    • G01S19/44
    • Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g., for processing signals from GNSS receivers of different manufacturers.
    • 提出了三种新的方法来改进多种全球卫星导航系统(GNSS)的浮动解决方案和模糊度分辨率,其中一种可能是基于FDMA的GNSS,如GLONASS:(1)两个硬件相关的差分时钟误差建模 (或更多)不同的GNSS,(2)对存在于频分多址(FDMA)GNSS中的频率相关偏差进行建模,以及(3)称为记分板部分定位(SPF)的模糊度分辨方法。 所呈现的方法与每个卫星导航系统跟踪的载波频率无关。 他们的应用程序导致更快更可靠的歧义解决。 与已知的算法相比,组合多GNSS观测的好处是以非常有效的方式被利用,这种算法常常导致多个GNSS性能下降。 已经发现频率相关偏压方法对于来自基本不相似的硬件的组合的GNSS观测是有效的,例如用于处理来自不同制造商的GNSS接收器的信号。