会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Gamma-ray microscopy methods
    • 伽玛射线显微镜法
    • US08433039B1
    • 2013-04-30
    • US12773005
    • 2010-05-03
    • Nathaniel Tue Tran
    • Nathaniel Tue Tran
    • G21G4/00
    • G02B21/00G21G4/06G21K7/00
    • This invention teaches a method of performing gamma-ray microscopy and how to build a gamma-ray microscope. While the beam of gamma rays can not be manipulated like a beam of light or a beam of electrons, magnification is possible using a single-point source of gamma radiation. With this design, gamma rays originate from a tiny point in space and radiate outward as they travel away from the source. This results in magnification when a sample is placed between this single-point source and a detector array. The magnification factor is equal to the source-to-detector distance divided by the source-to-sample distance. A single-point source of gamma rays can be made by crossing a beam of positrons with a beam of electrons. The finer and more focused these beams are, the smaller the single-point source can be, and the higher the resolution can be. Methods of making and focusing electron beams are known in the art of making electron microscopy. These methods can be adapted to accelerate and focus positrons into a fine beam. Positrons can be harvested from radioactive isotopes that emit positrons and trapped by electric fields and magnetic fields for use when necessary. Mini versions of particle accelerator can trap positrons in an orbit for regulated or pulsed beam of positrons to be generated.
    • 本发明教导了一种执行伽马射线显微镜的方法以及如何构建伽马射线显微镜。 虽然伽马射线束不能像光束或电子束一样被操纵,但是可以使用单点伽马射线源进行放大。 通过这种设计,伽马射线起源于太空中的一个微小点,并且在远离光源时向外辐射。 当样品放置在该单点源和检测器阵列之间时,这导致放大。 放大系数等于源到检测器的距离除以源到样本的距离。 可以通过将正电子束与电子束交叉来形成单点γ射线源。 这些光束越精细,越集中,单点光源可以越小,分辨率越高。 制造和聚焦电子束的方法在制造电子显微镜技术中是已知的。 这些方法可以适应于加速和将正电子聚焦成精细光束。 正电子可以从发射正电子的放射性同位素中收集,并在必要时被电场和磁场捕获。 微型加速器的微型版本可以将正电子俘获在轨道中,以产生用于调节或脉冲的正电子束。
    • 2. 发明授权
    • Methods and reagents for differential proteomic analysis
    • 差异蛋白质组学分析方法和试剂
    • US07175986B2
    • 2007-02-13
    • US10835027
    • 2004-04-28
    • Nathaniel Tue Tran
    • Nathaniel Tue Tran
    • C12Q1/68G01N33/53
    • G01N33/60
    • Methods and reagents for labeling molecules of interest in a plurality of samples, and then combining and selecting labeled molecules away from unlabeled molecules for use in simultaneous co-assaying analysis. The reagents comprise labeling means of distinguishable radioactive isotopes which remain with the labeled molecules. Additionally, the reagents also comprise selection means which can be affinity tags, beads, or immobilized surface which may remain or be cleaved off through cleavable linkers. A set of labeling reagent can be used to label a plurality of samples, combine them before or after selecting/enriching for labeled molecules and co-assay together for reliable comparison. This invention has many applications in comparing and panning for differentially abundant molecules or differential modification of molecules for proteomics, glycomics, phospho-proteomics, metabolomics, epi-genomics . . . studies.
    • 用于在多个样品中标记目标分子的方法和试剂,然后组合并选择远离未标记分子的标记分子,以用于同时共同测定分析。 试剂包括与标记分子保留的可区分放射性同位素的标记方法。 另外,试剂还包括可以是可以通过可切割接头保留或被切割的亲和标签,珠粒或固定化表面的选择方法。 可以使用一组标记试剂来标记多个样品,在选择/富集标记分子之前或之后组合它们,并共同测定以进行可靠的比较。 本发明在蛋白质组学,糖组学,磷蛋白质组学,代谢组学,表型基因组学的分子差异丰富的分子或差异修饰的比较和平移中具有许多应用。 。 。 学习。
    • 3. 发明申请
    • LOW POWER ADC FOR HIGH DYNAMIC RANGE INTEGRATING PIXEL ARRAYS
    • 低功率ADC用于高动态范围集成像素阵列
    • US20150288376A1
    • 2015-10-08
    • US14492310
    • 2014-09-22
    • Stephen GaalemaWilliam BahnDavid DobynsTue Tran
    • Stephen GaalemaWilliam BahnDavid DobynsTue Tran
    • H03M1/12
    • H03M1/12H03M1/44H03M1/50H04N5/363H04N5/3653H04N5/37455H04N5/378
    • In one or more embodiments, an apparatus and method for processing an analog signal into a digital signal includes an input current buffer circuit, a signal charge integration node, a dual function comparator, a step charge subtractor, a state latch, a coarse N-bit counter, an optional residue signal buffer and a residue signal M-bit time-to-digital (TDC) converter. The circuitry is free running, meaning that it is never reset. Instead, what is tracked for each frame is how much additional charge has been accumulated since the end of the previous integration period. Between each frame, the state of the counter and the amount of charge residing in the integration node are recorded. This information from the beginning and end of a given frame is differenced and to this is added the amount of charge indicated by the number of times the counter overflowed during the integration period.
    • 在一个或多个实施例中,用于将模拟信号处理成数字信号的装置和方法包括输入电流缓冲电路,信号电荷积分节点,双功能比较器,步进电荷减法器,状态锁存器,粗略N- 位计数器,可选的残留信号缓冲器和残留信号M位时间数字(TDC)转换器。 电路是自由运行的,这意味着它永远不会重置。 相反,每个帧跟踪的是从上一个积分期结束以来累积了多少额外费用。 在每个帧之间,记录计数器的状态和驻留在积分节点中的电荷量。 来自给定帧的开始和结束的信息是不同的,并且由此增加由计数器在积分期间溢出的次数所指示的费用量。
    • 5. 发明申请
    • RADIOACTIVE MULTIPLEXING ANALYTICAL METHODS FOR BIOMARKERS DISCOVERY
    • 用于生物识别发现的放射性多重分析方法
    • US20060084065A1
    • 2006-04-20
    • US10680277
    • 2003-10-07
    • Nathaniel Tue Tran
    • Nathaniel Tue Tran
    • C12Q1/68G01N33/53
    • G01N33/6848G01N33/60G01N2030/77G01N2458/15
    • A novel analytical method involves labeling samples with different radioactive labeling agents, mixing and subjecting the mixture to any separation technique, and then differentially detecting and quantifying subcomponents from each sample for comparison. The novel technique exploits the differences in radiation energy or half-life between isotopes to make differential detection and quantification of labels possible. Detailed methods for differential detection and quantification are also described as well as the construction and application of hardware and software to enable and enhance such a process. This method is useful in finding molecular differences between two samples in differential proteomics, phosphor-proteomics, glycomics, metabolomics, transcriptomics, genomics and diagnostic applications.
    • 一种新颖的分析方法包括用不同的放射性标记试剂标记样品,混合并使混合物进行任何分离技术,然后差异检测和定量每个样品的亚组分进行比较。 该技术利用了同位素辐射能量或半衰期的差异,使标签的差异检测和量化成为可能。 还描述了差分检测和量化的详细方法以及硬件和软件的构建和应用,以实现和增强这种过程。 该方法可用于在差异蛋白质组学,荧光蛋白质组学,糖组学,代谢组学,转录组学,基因组学和诊断应用中发现两个样品之间的分子差异。
    • 6. 发明授权
    • Radioactive multiplexing analytical methods for biomarkers discovery
    • 用于生物标志物发现的放射多重分析方法
    • US07029855B1
    • 2006-04-18
    • US10680277
    • 2003-10-07
    • Nathaniel Tue Tran
    • Nathaniel Tue Tran
    • C12Q1/68G01N33/53
    • G01N33/6848G01N33/60G01N2030/77G01N2458/15
    • A novel analytical method involves labeling samples with different radioactive labeling agents, mixing and subjecting the mixture to any separation technique, and then differentially detecting and quantifying subcomponents from each sample for comparison. The novel technique exploits the differences in radiation energy or half-life between isotopes to make differential detection and quantification of labels possible. Detailed methods for differential detection and quantification are also described as well as the construction and application of hardware and software to enable and enhance such a process. This method is useful in finding molecular differences between two samples in differential proteomics, phosphor-proteomics, glycomics, metabolomics, transcriptomics, genomics and diagnostic applications.
    • 一种新颖的分析方法包括用不同的放射性标记试剂标记样品,混合并使混合物进行任何分离技术,然后差异检测和定量每个样品的亚组分进行比较。 该技术利用了同位素辐射能量或半衰期的差异,使标签的差异检测和量化成为可能。 还描述了差分检测和量化的详细方法以及硬件和软件的构建和应用,以实现和增强这种过程。 该方法可用于在差异蛋白质组学,荧光蛋白质组学,糖组学,代谢组学,转录组学,基因组学和诊断应用中发现两个样品之间的分子差异。