会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for calibrating multi-axis load cells in a dexterous robot
    • 用于校准灵巧机器人中的多轴称重传感器的方法和装置
    • US08265792B2
    • 2012-09-11
    • US12760954
    • 2010-04-15
    • Charles W. Wampler, IIRobert J. Platt, Jr.
    • Charles W. Wampler, IIRobert J. Platt, Jr.
    • G05B19/04
    • G01L5/226B25J9/1692B25J15/0009G01L25/00G05B2219/39024G05B2219/40618
    • A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.
    • 机器人系统包括具有机器人接头的灵巧机器人,角度传感器适用于在相应的一个关节处测量关节角度,用于测量在预定姿势期间赋予相应的一个称重传感器的一组应变值的称重传感器 机器人和主机。 主机电连接到称重传感器和角度传感器,并且在预定姿势期间接收关节角度值和应变值。 机器人将一对称重传感器压在一起形成姿势。 主机执行处理关节角度和应变值的算法,并且从力平衡方程中误差最小的所有校准矩阵的集合中,选择一个最接近于一个值的校准矩阵集合到一个预定值。 还提供了一种通过算法校准称重传感器的方法。
    • 3. 发明申请
    • METHOD AND APPARATUS FOR AUTOMATIC CONTROL OF A HUMANOID ROBOT
    • 人类机器人自动控制的方法和装置
    • US20100280663A1
    • 2010-11-04
    • US12624445
    • 2009-11-24
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, IIMatthew J. ReilandAdam M. Sanders
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, IIMatthew J. ReilandAdam M. Sanders
    • B25J13/00
    • H01R13/17H01R13/052
    • A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
    • 机器人系统包括具有适于对由机器人作用的物体进行力控制的多个关节的人形机器人,用于从用户接收输入信号的图形用户界面(GUI)和控制器。 GUI为用户提供对控制器的直观编程访问。 控制器使用基于阻抗的控制框架控制关节,该框架响应于输入信号提供机器人的物体水平,末端执行器水平和/或联合空间级控制。 用于控制机器人系统的方法包括经由GUI接收输入信号,例如期望的力,然后使用主机处理输入信号,以经由基于阻抗的控制框架来控制关节。 该框架提供了机器人的对象级别,末端执行器级别和/或联合空间级别控制,并允许基于功能的GUI来简化无数操作模式的实现。
    • 4. 发明申请
    • TENSION DISTRIBUTION IN A TENDON-DRIVEN ROBOTIC FINGER
    • TENDON-DRIVEN ROBOTIC FINGER中的张力分布
    • US20100280659A1
    • 2010-11-04
    • US12720725
    • 2010-03-10
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, II
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, II
    • B25J15/08G05B15/00G06F19/00B25J9/00
    • H01R13/17H01R13/052
    • A method is provided for distributing tension among tendons of a tendon-driven finger in a robotic system, wherein the finger characterized by n degrees of freedom and n+1 tendons. The method includes determining a maximum functional tension and a minimum functional tension of each tendon of the finger, and then using a controller to distribute tension among the tendons, such that each tendon is assigned a tension value less than the maximum functional tension and greater than or equal to the minimum functional tension. The method satisfies the minimum functional tension while minimizing the internal tension in the robotic system, and satisfies the maximum functional tension without introducing a coupled disturbance to the joint torques. A robotic system includes a robot having at least one tendon-driven finger characterized by n degrees of freedom and n+1 tendons, and a controller having an algorithm for controlling the tendons as set forth above.
    • 提供了一种用于在机器人系统中将肌腱驱动的手指的肌腱之间分布张力的方法,其中手指具有n个自由度和n + 1个肌腱。 该方法包括确定手指的每个肌腱的最大功能张力和最小功能张力,然后使用控制器在肌腱之间分布张力,使得每个肌腱被赋予小于最大功能张力的张力值并且大于 或等于最小功能张力。 该方法在最小化机器人系统内部张力的同时满足最小功能张力,并满足最大功能张力,而不会对关节扭矩引入耦合干扰。 机器人系统包括具有至少一个腱驱动的手指,其特征在于n个自由度和n + 1个腱的机器人,以及具有如上所述的用于控制腱的算法的控制器。
    • 7. 发明申请
    • METHOD AND APPARATUS FOR CALIBRATING MULTI-AXIS LOAD CELLS IN A DEXTEROUS ROBOT
    • 用于校正异常机器人中的多轴负载细胞的方法和装置
    • US20110257784A1
    • 2011-10-20
    • US12760954
    • 2010-04-15
    • Charles W. Wampler, IIRobert J. Platt, JR.
    • Charles W. Wampler, IIRobert J. Platt, JR.
    • G05B19/04G01L25/00
    • G01L5/226B25J9/1692B25J15/0009G01L25/00G05B2219/39024G05B2219/40618
    • A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.
    • 机器人系统包括具有机器人接头的灵巧机器人,角度传感器适用于在相应的一个关节处测量关节角度,用于测量在预定姿势期间赋予相应的一个称重传感器的一组应变值的称重传感器 机器人和主机。 主机电连接到称重传感器和角度传感器,并且在预定姿势期间接收关节角度值和应变值。 机器人将一对称重传感器压在一起形成姿势。 主机执行处理关节角度和应变值的算法,并且从力平衡方程中误差最小的所有校准矩阵的集合中,选择一个最接近于一个值的校准矩阵集合到一个预定值。 还提供了一种通过算法校准称重传感器的方法。
    • 8. 发明申请
    • HIERARCHICAL ROBOT CONTROL SYSTEM AND METHOD FOR CONTROLLING SELECT DEGREES OF FREEDOM OF AN OBJECT USING MULTIPLE MANIPULATORS
    • 分级机器人控制系统和使用多个操纵器控制对象的自由选择程度的方法
    • US20100280661A1
    • 2010-11-04
    • US12686512
    • 2010-01-13
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, II
    • Muhammad E. AbdallahRobert J. Platt, JR.Charles W. Wampler, II
    • B25J9/00G06F19/00G05B15/00B25J9/16
    • H01R13/17H01R13/052
    • A robotic system includes a robot having manipulators for grasping an object using one of a plurality of grasp types during a primary task, and a controller. Hie controller controls the manipulators dining the primary task using a multiple-task control hierarchy, and automatically parameterizes the internal forces of the system for each grasp type in response to an input signal. The primary task is defined at an object-level of control e.g., using a closed-chain transformation, such that only select degrees of freedom are commanded for the object. A control system for the robotic system has a host machine and algorithm for controlling the manipulators using the above hierarchy. A method for controlling the system includes receiving and processing the input signal using the host machine, including defining the primary task at the object-level of control, e.g., using a closed-chain definition, and parameterizing the internal forces for each of grasp type.
    • 机器人系统包括机器人,其具有用于在主任务期间使用多个抓握类型中的一个抓握对象的操纵器,以及控制器。 Hie控制器控制操纵器使用多任务控制层次来对主要任务进行用餐,并且响应于输入信号自动地对每个抓握类型的系统的内力进行参数化。 主要任务被定义在对象级别的控制下,例如使用闭合链变换,使得仅为对象命令选择自由度。 用于机器人系统的控制系统具有使用上述层级控制操纵器的主机和算法。 用于控制系统的方法包括使用主机接收和处理输入信号,包括在对象级别的控制下定义主要任务,例如使用闭合链定义,以及对每个抓握类型的内部力进行参数化 。
    • 9. 发明授权
    • Method and system for controlling a dexterous robot execution sequence using state classification
    • 使用状态分类控制灵巧机器人执行顺序的方法和系统
    • US08706299B2
    • 2014-04-22
    • US13196252
    • 2011-08-02
    • Adam M. SandersRobert J. Platt, Jr.Nathaniel QuillinFrank Noble PermenterJoseph Pfeiffer
    • Adam M. SandersRobert J. Platt, Jr.Nathaniel QuillinFrank Noble PermenterJoseph Pfeiffer
    • G05B15/00G05B19/00
    • B25J9/1656G05B2219/40387
    • A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.
    • 机器人系统包括灵巧机器人和控制器。 机器人包括多个机器人接头,用于移动接头的致动器,以及用于测量接头的特性的传感器,以及用于传送特性作为传感器信号。 控制器接收传感器信号,并且被配置为执行来自存储器的指令,经由状态分类模块将传感器信号分类为不同的等级,使用该类监视机器人的系统状态,以及控制机器人执行替代工作 基于系统状态的任务。 一种用于在上述系统中控制机器人的方法包括经由控制器接收信号,使用状态分类模块对信号进行分类,使用该类监视机器人的当前系统状态,以及在执行替代工作任务时控制机器人 基于当前的系统状态。
    • 10. 发明授权
    • Applying workspace limitations in a velocity-controlled robotic mechanism
    • 在速度控制的机器人机制中应用工作空间限制
    • US08676382B2
    • 2014-03-18
    • US12787479
    • 2010-05-26
    • Muhammad E. AbdallahBrian HargraveRobert J. Platt, Jr.
    • Muhammad E. AbdallahBrian HargraveRobert J. Platt, Jr.
    • G05B15/00G05B19/00
    • B25J9/1612
    • A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.
    • 机器人系统包括响应于速度控制信号的机器人机构和由凸多边形边界限定的允许工作空间。 主机确定相对于边界的机构上的参考点的位置,并且包括用于通过根据位置自动地形成速度控制信号来强制边界的算法,从而提供机构的平滑和不受干扰的操作 沿着边界的边缘和角落。 该算法适用于具有较高速度和/或外力的应用。 主机包括用于通过使作为参考点位置的函数的速度控制信号整形来强制边界的算法,以及用于执行该算法的硬件模块。 还提供了一种用于强制凸多边形边界的方法,其根据参考点位置通过主机对速度控制信号进行成形。