会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Cross-flow differential migration classifier
    • 横流差分迁移分类器
    • US06905029B2
    • 2005-06-14
    • US10651407
    • 2003-08-29
    • Richard C. Flagan
    • Richard C. Flagan
    • B01D21/00B03C1/035B03C3/36B01D61/00B07B7/00
    • B01D21/0009B03C1/035B03C3/36
    • A method, system, apparatus, and article of manufacture provide a cross-flow migration classifier capable of separating particles. The classifier provides a channel through which a sample, having one or more particles, passes in a first direction, wherein the channel comprises two or more walls that are permeable to a flow of fluid. A cross-flow enters the channel through one of the permeable walls and exits through another of the permeable walls. An imposed field is applied in a second direction that is counter to the cross-flow and having an orthogonal component to the first direction. The imposed field causes one or more of the particles to migrate at a first velocity opposite and/or equal to a second velocity of the cross-flow. The particles that migrate opposite to the cross-flow are continuously discharged from the cross-flow migration classifier.
    • 方法,系统,装置和制品提供能够分离颗粒的交叉流动迁移分类器。 分级器提供通道,通过该通道具有一个或多个颗粒的样品沿着第一方向通过,其中通道包括两个或更多个可渗透流体的壁。 横流通过可渗透壁之一进入通道,并通过另一个可渗透壁离开。 施加的场被施加在与横流相反并且具有与第一方向成正交分量的第二方向上。 施加的场引起一个或多个颗粒以与交叉流的第二速度相反和/或等于第二速度的第一速度迁移。 与交叉流相反迁移的颗粒从交叉流动迁移分级器连续排出。
    • 6. 发明授权
    • Aerosol reactor production of uniform submicron powders
    • 气溶胶反应器生产均匀的亚微米粉末
    • US4994107A
    • 1991-02-19
    • US248486
    • 1988-09-08
    • Richard C. FlaganJin J. Wu
    • Richard C. FlaganJin J. Wu
    • B22F9/12C01B21/068C01B31/30C01B33/029
    • B82Y30/00B22F9/12C01B21/068C01B31/30C01B33/029C01P2004/03C01P2004/51C01P2004/61C01P2004/62C01P2004/64
    • A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.
    • 在单级反应器中生产亚微米非团聚颗粒的方法包括在一端引入反应物或反应物混合物,同时改变沿反应器的温度以低速率引发反应。 由于在反应器的初始部分中产生的均匀少量的种子颗粒进入反应器,所以通过沿着反应器长度的程序化温度升高逐渐加速反应,以通过化学气相沉积促进颗粒生长,同时通过维持最小化附聚物形成 反应器中数量足够低的颗粒,使得在反应器内的颗粒的停留时间内凝结被抑制。 最高温度和最小停留时间由使反应完成所必需的温度和停留时间的组合来定义。 在一个实施方案中,将电子级硅烷和高纯氮引入反应器中,并且使用约770°至1550°K的温度。 在另一个实施方案中,在750℃至1800℃的温度下使用硅烷和氨。
    • 8. 发明申请
    • SYSTEMS AND METHODS FOR CONCENTRATING SOLAR ENERGY WITHOUT TRACKING THE SUN
    • 不追踪太阳能集中太阳能的系统和方法
    • US20100258170A1
    • 2010-10-14
    • US12723625
    • 2010-03-13
    • Julia A. KornfieldRichard C. Flagan
    • Julia A. KornfieldRichard C. Flagan
    • H01L31/0232B23P15/26
    • H01L31/0547F24S23/30Y02E10/52Y10T29/49355
    • Systems and methods for concentrating solar energy without tracking the sun are provided. In one embodiment, the invention relates to a solar collector assembly for collecting and concentrating light for solar cell assemblies, the collector assembly including an array of solar collectors, each including a funnel shaped collector including a side wall defining a tapered opening having a base aperture and an upper aperture, the side wall including an outer surface, and a solar cell assembly positioned at the base aperture, where the outer surface is coated with a material that substantially reflects light, where the upper aperture is wider than the base aperture, where the funnel shaped collector is configured to substantially confine light, incident via the upper aperture, within the funnel shaped collector until the light exits proximate the base aperture, and where the solar cell assembly is configured to capture light exiting the base aperture.
    • 提供了集中太阳能而不追踪太阳的系统和方法。 在一个实施例中,本发明涉及一种用于收集和集中用于太阳能电池组件的光的太阳能收集器组件,该收集器组件包括太阳能收集器阵列,每个太阳能收集器包括一个漏斗形收集器,该漏斗形收集器包括一个限定锥形开口的侧壁, 以及上孔,侧壁包括外表面,以及位于基孔处的太阳能电池组件,其中外表面涂覆有基本上反射光的材料,其中上孔比基孔宽,其中 漏斗形收集器被配置为基本上限制在漏斗形收集器中经由上孔入射的光,直到光离开基座孔离开,并且其中太阳能电池组件被配置为捕获离开基座孔的光。
    • 9. 发明授权
    • Aerosol process for fabricating discontinuous floating gate microelectronic devices
    • 用于制造不连续浮栅微电子器件的气溶胶工艺
    • US06723606B2
    • 2004-04-20
    • US09895791
    • 2001-06-29
    • Richard C. FlaganHarry A. AtwaterMichele L. Ostraat
    • Richard C. FlaganHarry A. AtwaterMichele L. Ostraat
    • H01L218247
    • B82Y10/00G11C2216/06H01L21/28273H01L21/28282H01L29/42332H01L29/66833
    • A process for forming an aerosol of semiconductor nanoparticles includes pyrolyzing a semiconductor material-containing gas then quenching the gas being pyrolyzed to control particle size and prevent uncontrolled coagulation. The aerosol is heated to densify the particles and form crystalline nanoparticles. In an exemplary embodiment, the crystalline particles are advantageously classified by size using a differential mobility analyzer and particles having diameters outside of a pre-selected range of sizes, are removed from the aerosol. In an exemplary embodiment, the crystalline, classified and densified nanoparticles are oxidized to form a continuous oxide shell over the semiconductor core of the particles. The cores include a density which approaches the bulk density of the pure material of which the cores are composed and the majority of the particle cores are single crystalline. The oxidized particles are deposited on a substrate using thermophoretic, electrophoretic, or other deposition means. The deposited particles form a stratum or discontinuous monolayer of oxidized semiconductor particles. In an exemplary embodiment, the stratum is characterized by a uniform particle density on the order of 1012 to 1013 particles/cm2 and a tightly controlled range of particle sizes. A plurality of adjacent particles contact each other, but the oxide shells provide electrical isolation between the particles of the stratum. Clean processing techniques provide a density of foreign atom contamination of less than 1011 atoms/cm2. The stratum is advantageously used as the floating gate in a non-volatile memory device such as a MOSFET. The non-volatile memory device exhibits excellent endurance behavior and long-term non-volatility.
    • 用于形成半导体纳米颗粒气溶胶的方法包括热解含半导体材料的气体,然后淬灭被热解的气体以控制粒度并防止不受控制的凝结。 将气溶胶加热以使颗粒致密化并形成结晶纳米颗粒。 在一个示例性实施方案中,结晶颗粒有利地使用差示迁移率分析仪的大小进行分类,并且从气溶胶中除去具有预定尺寸范围外的直径的颗粒。 在一个示例性实施方案中,结晶,分级和致密的纳米颗粒被氧化以在颗粒的半导体芯上形成连续的氧化物壳。 核心包括接近构成芯的纯材料的体积密度的密度,并且大部分颗粒芯是单晶的。 使用热泳,电泳或其他沉积方法将氧化的颗粒沉积在基底上。 沉积的颗粒形成氧化半导体颗粒的层或不连续的单层。 在一个示例性实施方案中,层的特征在于具有约10 12至10 13颗粒/ cm 2的均匀颗粒密度和颗粒尺寸的严格控制范围。 多个相邻的颗粒彼此接触,但是氧化物壳在层的颗粒之间提供电隔离。 清洁处理技术提供小于10 11个原子/ cm 2的外来原子污染物的密度。 该层有利地用作诸如MOSFET之类的非易失性存储器件中的浮动栅极。 非易失性存储器件表现出优异的耐久性和长期非挥发性。