会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for Ultra-Fast Controlling of a Magnetic Cell and Related Devices
    • 用于超快速控制磁性细胞和相关器件的方法
    • US20100164487A1
    • 2010-07-01
    • US12648958
    • 2009-12-29
    • Wouter EyckmansLiesbet Lagae
    • Wouter EyckmansLiesbet Lagae
    • G01N27/72H01H55/00
    • G01R33/02B82Y25/00G11C11/161G11C11/1673G11C11/1675H01F10/193H01F10/26H01F10/3213H01F10/3254H01F10/3268H01L43/08H03B15/006H03H2/001H03H9/02574H03H9/02645H03H9/02976H03H9/135H03H9/6486H03K19/19
    • The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency νFMR the ferromagnetic element (106) is absorbed well and the magnetization state of the element can be controlled with this FMR frequency. The device can be used in an RF-magnetic resonator, a sensor and a camera. The corresponding method can be used for ultrafast reading-out and switching of magnetic components and in magnetic logic.
    • 本发明涉及一种用于超快速控制磁性元件的磁化的装置和相应的方法。 一种装置(100)包括表面声波产生装置(102),通常在功能上和部分结构上包括在所述SAW发生装置(102)中的传输层(104)和至少一个铁磁元件(106)。 生成表面声波并在通常由压电材料组成的传输层(104)中传播。 因此,在与该传输层(104)接触的传输层(104)和铁磁元件(106)中诱发应变。 由于磁弹性耦合,这在铁磁元件(106)中产生有效的磁场。 如果表面声波具有基本上接近铁磁共振(FMR)频率和频率FMR的频率,铁磁元件(106)被很好地吸收,并且可以用该FMR频率来控制元件的磁化状态。 该器件可用于射频磁共振器,传感器和相机。 相应的方法可用于磁性部件的超快速读出和切换以及磁逻辑。
    • 2. 发明授权
    • Detection of resonant tags by ultra-wideband (UWB) radar
    • 通过超宽带(UWB)雷达检测谐振标签
    • US07719280B2
    • 2010-05-18
    • US11750155
    • 2007-05-17
    • Liesbet LagaeGustaaf Borghs
    • Liesbet LagaeGustaaf Borghs
    • G01V3/00
    • G01S13/0209A61N1/403G01S7/411G01S13/75G01S13/753H04B1/7163
    • A detection system having a receiver for detecting a material having a magnetic resonance response to illumination by pulses of ultra-wideband (UWB) electromagnetic radiation is disclosed. The receiver comprises a detector for detecting the pulses after they have interacted with the material, and a discriminator arranged to identify in the detected pulses the magnetic resonance response of the material. By scanning an item tagged with a tag having a material having a magnetic resonant response, by illuminating the item with UWB pulses and identifying in detected pulses the magnetic resonance response of the material, items can be located, imaged, or activated. The magnetic resonance response of the tag can cause activation of the tag. The tag can have a magnetic resonance response arranged to provide an identifiable magnetic resonance signature such that different tags can be identified and distinguished by their signatures.
    • 公开了一种检测系统,其具有用于通过超宽带(UWB)电磁辐射的脉冲检测具有对照明的磁共振响应的材料的接收器。 接收机包括用于在与材料相互作用之后检测脉冲的检测器,以及用于在检测到的脉冲中识别材料的磁共振响应的鉴别器。 通过扫描具有具有磁共振响应的材料的标签的项目,通过用UWB脉冲照亮该项目并且在检测到的脉冲中识别材料的磁共振响应,物品可以被定位,成像或激活。 标签的磁共振响应可能导致标签的激活。 标签可以具有布置成提供可识别的磁共振签名的磁共振响应,使得可以通过其签名识别和区分不同的标签。
    • 6. 发明申请
    • PATTERNING OF AND CONTACTING MAGNETIC LAYERS
    • 图案和接触磁层
    • US20120052258A1
    • 2012-03-01
    • US13202300
    • 2010-05-18
    • Maria Op De BeeckLiesbet Lagae
    • Maria Op De BeeckLiesbet Lagae
    • B32B3/00C23F1/04H01F41/34B05D3/00B05D3/10B05D5/12B05D5/00
    • H01L43/12
    • A method according to embodiments of the present invention comprises providing a magnetic stack comprising a magnetic layer sub-stack comprising magnetic layers and a bottom conductive electrode and a top conductive electrode electrically connecting the magnetic layer sub-stack at opposite sides thereof; providing a sacrificial pillar on top of the magnetic stack, the sacrificial pillar having an undercut with respect to an overlying second sacrificial material and a sloped foot with increasing cross-sectional dimension towards the magnetic stack, using the sacrificial pillar for patterning the magnetic stack, depositing an insulating layer around the sacrificial pillar, selectively removing the sacrificial pillar, thus creating a contact hole towards the patterned magnetic stack, and filling the contact hole with electrically conductive material.
    • 根据本发明的实施例的方法包括提供包括磁层子层的磁性堆叠,所述磁层包括磁性层和底部导电电极以及在其相对侧电连接磁性层子层的顶部导电电极; 在磁性堆叠的顶部提供牺牲柱,所述牺牲柱相对于上覆的第二牺牲材料具有底切,并且具有朝向磁性堆叠的横截面尺寸增加的倾斜脚,使用用于图案化磁性堆叠的牺牲柱, 在牺牲柱周围沉积绝缘层,选择性地去除牺牲柱,从而产生朝向图案化磁性堆叠的接触孔,并用导电材料填充接触孔。
    • 8. 发明授权
    • Method for ultra-fast controlling of a magnetic cell and related devices
    • 用于超快速控制磁性电池及相关装置的方法
    • US07791250B2
    • 2010-09-07
    • US12648958
    • 2009-12-29
    • Wouter EyckmansLiesbet Lagae
    • Wouter EyckmansLiesbet Lagae
    • H03H9/25H01L41/00
    • G01R33/02B82Y25/00G11C11/161G11C11/1673G11C11/1675H01F10/193H01F10/26H01F10/3213H01F10/3254H01F10/3268H01L43/08H03B15/006H03H2/001H03H9/02574H03H9/02645H03H9/02976H03H9/135H03H9/6486H03K19/19
    • The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency νFMR the ferromagnetic element (106) is absorbed well and the magnetization state of the element can be controlled with this FMR frequency. The device can be used in an RF-magnetic resonator, a sensor and a camera. The corresponding method can be used for ultrafast reading-out and switching of magnetic components and in magnetic logic.
    • 本发明涉及一种用于超快速控制磁性元件的磁化的装置和相应的方法。 一种装置(100)包括表面声波产生装置(102),通常在功能上和部分结构上包括在所述SAW发生装置(102)中的传输层(104)和至少一个铁磁元件(106)。 生成表面声波并在通常由压电材料组成的传输层(104)中传播。 因此,在与该传输层(104)接触的传输层(104)和铁磁元件(106)中诱发应变。 由于磁弹性耦合,这在铁磁元件(106)中产生有效的磁场。 如果表面声波具有基本上接近铁磁共振(FMR)频率和频率FMR的频率,铁磁元件(106)被很好地吸收,并且可以用该FMR频率来控制元件的磁化状态。 该器件可用于射频磁共振器,传感器和相机。 相应的方法可用于磁性部件的超快速读出和切换以及磁逻辑。
    • 9. 发明申请
    • Method for determining an analyte in a sample
    • 测定样品中分析物的方法
    • US20090027681A1
    • 2009-01-29
    • US12220346
    • 2008-07-24
    • Iwijn De VlaminckPol Van DorpeLiesbet Lagae
    • Iwijn De VlaminckPol Van DorpeLiesbet Lagae
    • G01N21/55
    • G01N21/554B82Y15/00G01N2021/258
    • In one aspect of the invention, a method or apparatus is described for determining concentration(s) of one or more analytes in a sample using plasmonic excitations. In another aspect, a method relates to designing systems for such concentration determination, wherein metallic nanostructures are used in combination with local electrical detection of such plasmon resonances via a semiconducting photodetector. In certain aspects, the method exploits the coupling of said metallic nanostructure(s) to a semiconducting photodetector, said detector being placed in the “metallic structure's” near field. Surface plasmon excitation can be transduced efficiently into an electrical signal through absorption of light that is evanescently coupled or scattered in a semiconductor volume. This local detection technique allows the construction of sensitive nanoscale bioprobes and arrays thereof.
    • 在本发明的一个方面,描述了一种用于使用等离子体激发来测定样品中一种或多种分析物的浓度的方法或装置。 在另一方面,一种方法涉及设计用于这种浓度测定的系统,其中金属纳米结构经由半导体光电检测器与这种等离子体共振的局部电检测结合使用。 在某些方面,该方法利用所述金属纳米结构与半导体光电检测器的耦合,所述检测器被放置在“金属结构”的近场中。 表面等离子体激发可以通过吸收在半导体体积中瞬时耦合或散射的光而有效地转换成电信号。 这种局部检测技术允许构建敏感的纳米级生物探针及其阵列。
    • 10. 发明授权
    • Patterning of and contacting magnetic layers
    • 磁性层的图案化和接触
    • US08590139B2
    • 2013-11-26
    • US13202300
    • 2010-05-18
    • Maria Op De BeeckLiesbet LagaeSven Cornelissen
    • Maria Op De BeeckLiesbet LagaeSven Cornelissen
    • H04R31/00G11B5/127G11B5/39
    • H01L43/12
    • A method according to embodiments of the present invention comprises providing a magnetic stack comprising a magnetic layer sub-stack comprising magnetic layers and a bottom conductive electrode and a top conductive electrode electrically connecting the magnetic layer sub-stack at opposite sides thereof; providing a sacrificial pillar on top of the magnetic stack, the sacrificial pillar having an undercut with respect to an overlying second sacrificial material and a sloped foot with increasing cross-sectional dimension towards the magnetic stack, using the sacrificial pillar for patterning the magnetic stack, depositing an insulating layer around the sacrificial pillar, selectively removing the sacrificial pillar, thus creating a contact hole towards the patterned magnetic stack, and filling the contact hole with electrically conductive material.
    • 根据本发明的实施例的方法包括提供包括磁层子层的磁性堆叠,所述磁层包括磁性层和底部导电电极以及在其相对侧电连接磁性层子层的顶部导电电极; 在磁性堆叠的顶部提供牺牲柱,牺牲柱相对于上覆的第二牺牲材料具有底切,并且具有朝向磁性堆叠的横截面尺寸增加的倾斜脚,使用用于图案化磁性堆叠的牺牲柱, 在牺牲柱周围沉积绝缘层,选择性地去除牺牲柱,从而产生朝向图案化磁性堆叠的接触孔,并用导电材料填充接触孔。