会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Torsional resonance mode probe-based instrument and method
    • 基于扭转共振模式探针的仪器和方法
    • US06945099B1
    • 2005-09-20
    • US10189108
    • 2002-07-02
    • Chanmin SuKenneth L. BabcockLin Huang
    • Chanmin SuKenneth L. BabcockLin Huang
    • G01Q10/06G01Q60/26G01B5/28
    • G01Q10/065G01Q60/26
    • An apparatus and method of operating a probe-based instrument in a torsional mode. The method includes providing a probe having a cantilever defining a longitudinal axis and supporting a tip. In operation, the method torsionally oscillates the probe generally about the longitudinal axis at a resonance. In addition, the method changes a separation distance between the tip and a surface of a sample so the tip interacts with the surface during data acquisition. By detecting a change in the torsional oscillation of the cantilever in response to the interaction between the tip and the surface, forces, including shear forces and shear force gradients, between the tip and the surface can be measured to determine sub-nanometer features.
    • 在扭转模式下操作基于探针的仪器的装置和方法。 该方法包括提供具有限定纵向轴线并支撑尖端的悬臂的探针。 在操作中,该方法通常围绕纵轴在谐振下使探头振荡。 此外,该方法改变了尖端和样品表面之间的分离距离,使得尖端在数据采集期间与表面相互作用。 通过检测悬臂的扭转振动响应于尖端和表面之间的相互作用的变化,可以测量尖端和表面之间的力,包括剪切力和剪切力梯度,以确定亚纳米特征。
    • 5. 发明授权
    • Method and apparatus for obtaining improved vertical metrology
measurements
    • 用于获得改进的垂直度量测量的方法和装置
    • US5898106A
    • 1999-04-27
    • US937494
    • 1997-09-25
    • Kenneth L. BabcockVirgil B. ElingsJohn A. GurleyKevin Kjoller
    • Kenneth L. BabcockVirgil B. ElingsJohn A. GurleyKevin Kjoller
    • G01B11/30G01B5/28G01B7/34G01B21/30G01Q10/06G01Q30/04G01Q30/06G01Q60/00G01Q70/08
    • G01Q10/06B82Y35/00G01B7/34G01Q30/04Y10S977/852
    • A probe-based surface characterization or metrology instrument such as a scanning probe microscope (SPM) or a profilometer is controlled to account for errors in the vertical positioning of its probe and errors in detecting the vertical position of its probe while scanning over relatively large lateral distances. Accounting for these errors significantly improves the measurement of vertical dimensions. These errors are accounted for by subtracting reference scan data acquired from the scanned sample from measurement scan data. The measurement scan data is obtained from an area that includes the feature of interest as well as a portion of a reference area which is preferably located near to the feature of interest and which is preferably featureless. The reference scan data is obtained from an area that includes the reference area and that preferably excludes the features of interest. Subtracting the reference such data from the measurement scan data obtains corrected measurement scan data that accounts for scanning errors and for errors in detecting the probe idiosyncrasies. In order to facilitate process automation, the features of interest can be identified automatically or semi-automatically by operating the instrument in a feature-locating mode to identify distinguishing characteristics of the features of interest such as differences in magnetic or electrical properties between the features of interest and the adjacent features. This procedure is particularly wellsuited for measuring pole tip recession in a magnetic head.
    • 控制探针的表面表征或计量仪器,例如扫描探针显微镜(SPM)或轮廓仪,以考虑其探针的垂直定位误差和检测其探针的垂直位置时的误差,同时扫描较大的侧向 距离 考虑到这些错误显着提高了垂直尺寸的测量。 通过从测量扫描数据减去从扫描样本获得的参考扫描数据来解释这些误差。 测量扫描数据从包括感兴趣特征的区域以及优选位于感兴趣特征附近并且优选无特征的参考区域的一部分获得。 参考扫描数据从包括参考区域的区域获得,并且优选排除感兴趣的特征。 从测量扫描数据中减去参考这些数据获得校正的扫描误差的测量扫描数据和检测探针特性的误差。 为了便于过程自动化,可以通过在特征定位模式中操作仪器来自动或半自动地识别感兴趣的特征,以识别感兴趣的特征的区别特征,例如磁性或电特性之间的差异 兴趣和相邻功能。 该过程特别适用于测量磁头中的极尖衰退。