会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • IMAGE SENSOR HAVING HETEROJUNCTION BIPOLAR TRANSISTOR AND METHOD OF FABRICATING THE SAME
    • 具有异相双极晶体管的图像传感器及其制造方法
    • US20080099806A1
    • 2008-05-01
    • US11872308
    • 2007-10-15
    • Jin Yeong KANGSang Heung LEEJin Gun KOO
    • Jin Yeong KANGSang Heung LEEJin Gun KOO
    • H01L27/146H01L21/00
    • H01L27/14689H01L27/14609H01L27/14681
    • Provided are image sensor having a heterojunction bipolar transistor (HBT) and a method of fabricating the same. The image sensor is fabricated by use of silicon-germanium bipolar junction transistor complementary metal oxide semiconductor (SiGe BiCMOS) technology. In the image sensor, a PD employs a floating-base-type SiGe HBT unlike a pn-junction-based CMOS image sensor (CIS). A floating base of the SiGe HBT produces a positive (+) voltage with respect to a collector during an exposure process, and the HBT performs a reverse bipolar operation due to the positive voltage so that the collector and an emitter exchange functions. In particular, since the SiGe HBT obtains a current gain ten times as high as that of a typical bipolar device even during the reverse operation, the SiGe HBT cannot only sense an optical (image) current signal but also amplify the optical current signal. Thus, the image sensor requires only three transistors in a pixel so that the degree of integration can increase. Also, the floating base of the HBT is a SiGe or SiGeC epitaxial layer with a very small thickness of 150 Å or less, and even heavily doped B ions are barely thermally diffused due to the properties of the SiGe or SiGeC layer. As a result, the sensitivity of signals can improve in the short wavelength region, thus easily balancing three colors. Furthermore, since the image sensor is a direct signal current amplification type mechanism and senses an optical signal current in a steady mode, a sensing signal has excellent linearity, and thus both a sensing mechanism and control circuit are very simple.
    • 提供了具有异质结双极晶体管(HBT)的图像传感器及其制造方法。 图像传感器通过使用硅 - 锗双极结型晶体管互补金属氧化物半导体(SiGe BiCMOS)技术制造。 在图像传感器中,PD采用基于pn结的CMOS图像传感器(CIS)的浮置型SiGe HBT。 SiGe HBT的浮动基极在曝光过程中产生相对于集电极的正(+)电压,并且HBT由于正电压而执行反向双极性操作,使得集电极和发射极交换功能起作用。 特别是,由于SiGe HBT即使在反向工作时也能获得比典型双极型器件高十倍的电流增益,所以SiGe HBT不仅可以检测光学(图像)电流信号,还可以放大光电流信号。 因此,图像传感器仅需要像素中的三个晶体管,使得集成度可以增加。 此外,HBT的浮动基底是具有150或更小厚度的非常小的SiGe或SiGeC外延层,并且由于SiGe或SiGeC层的性质,甚至重掺杂的B离子几乎没有热扩散。 结果,信号的灵敏度可以在短波长区域内改善,从而容易平衡三种颜色。 此外,由于图像传感器是直接信号电流放大型机构,并且在稳定模式下感测光信号电流,所以感测信号具有优异的线性度,因此感测机构和控制电路都非常简单。
    • 2. 发明授权
    • Method of fabricating T-type gate
    • 制造T型门的方法
    • US07141464B2
    • 2006-11-28
    • US11179983
    • 2005-07-12
    • Jong Moon ParkKun Sik ParkSeong Wook YooYong Sun YoonSang Gi KimYoon Kyu BaeByung Won LimJin Gun KooBo Woo Kim
    • Jong Moon ParkKun Sik ParkSeong Wook YooYong Sun YoonSang Gi KimYoon Kyu BaeByung Won LimJin Gun KooBo Woo Kim
    • H01L21/338
    • H01L21/28587
    • Provided is a method of fabricating a T-type gate including the steps of: forming a first photoresist layer, a blocking layer and a second photoresist layer to a predetermined thickness on a substrate, respectively; forming a body pattern of a T-type gate on the second photoresist layer and the blocking layer; exposing a predetermined portion of the second photoresist layer to form a head pattern of the T-type gate, and performing a heat treatment process to generate cross linking at a predetermined region of the second photoresist layer except for the head pattern of the T-type gate; performing an exposure process on an entire surface of the resultant structure, and then removing the exposed portion; and forming a metal layer of a predetermined thickness on an entire surface of the resultant structure, and then removing the first photoresist layer, the blocking layer, the predetermined region of the second photoresist layer in which the cross linking are generated, and the metal layer, whereby it is possible to readily perform a compound semiconductor device manufacturing process, and to reduce manufacturing cost by means of the increase of manufacturing yield and the simplification of manufacturing processes.
    • 提供一种制造T型栅极的方法,包括以下步骤:分别在衬底上形成预定厚度的第一光致抗蚀剂层,阻挡层和第二光致抗蚀剂层; 在所述第二光致抗蚀剂层和所述阻挡层上形成T型栅极的主体图案; 暴露第二光致抗蚀剂层的预定部分以形成T型栅极的头部图案,并且进行热处理工艺以在除了T型的头部图案之外的第二光致抗蚀剂层的预定区域处产生交联 门; 在所得结构的整个表面上进行曝光处理,然后去除所述暴露部分; 在所得结构的整个表面上形成预定厚度的金属层,然后去除第一光致抗蚀剂层,阻挡层,产生交联的第二光致抗蚀剂层的预定区域和金属层 ,由此可以容易地进行化合物半导体器件制造工艺,并且通过增加制造成品率和简化制造工艺来降低制造成本。
    • 3. 发明授权
    • Method for fabricating power semiconductor device having trench gate structure
    • US06852597B2
    • 2005-02-08
    • US10071127
    • 2002-02-08
    • Il-Yong ParkJong Dae KimSang Gi KimJin Gun KooDae Woo LeeRoh Tae MoonYang Yil Suk
    • Il-Yong ParkJong Dae KimSang Gi KimJin Gun KooDae Woo LeeRoh Tae MoonYang Yil Suk
    • H01L21/336H01L29/417H01L29/78
    • H01L29/7813H01L29/41766H01L29/41775H01L29/7802
    • A method for fabricating a power semiconductor device having a trench gate structure is provided. An epitaxial layer of a first conductivity type having a low concentration and a body region of a second conductivity type are sequentially formed on a semiconductor substrate of the first conductivity type having a high concentration. An oxide layer pattern is formed on the body region. A first trench is formed using the oxide layer pattern as an etching mask to perforate a predetermined portion of the body region having a first thickness. A body contact region of the second conductivity type having a high concentration is formed to surround the first trench by impurity ion implantation using the oxide layer pattern as an ion implantation mask. First spacer layers are formed to cover the sidewalls of the first trench and the sidewalls of the oxide layer pattern. A second trench is formed using the oxide layer pattern and the first spacer layers as etching masks to perforate a predetermined portion of the body region having a second thickness greater than the first thickness. A source region of the first conductivity type having a high concentration is formed to surround the second trench by impurity ion implantation using the oxide layer pattern and the first spacer layers as ion implantation masks. Second spacer layers are formed to cover the sidewalls of the second trench and the sidewalls of the first spacer layers. A third trench is formed to a predetermined depth of the epitaxial layer using the oxide layer pattern, the first spacer layers, and the second spacer layers as etching masks. A gate insulating layer is formed in the third trench. A gate conductive pattern is formed in the gate insulating layer. An oxide layer is formed on the gate conductive layer pattern. The first and second spacer layers are removed. A first metal electrode layer is formed to be electrically connected to the source region and the body contact region. A second metal electrode layer is formed to be electrically connected to the gate conductive layer pattern. A third metal electrode layer is formed to be electrically connected to the semiconductor substrate.
    • 6. 发明授权
    • Input and output port circuit
    • 输入输出端口电路
    • US06774697B2
    • 2004-08-10
    • US10325929
    • 2002-12-23
    • Yil Suk YangJong Dae KimTae Moon RohJin Gun KooDae Woo LeeSang Gi KimIl Yong Park
    • Yil Suk YangJong Dae KimTae Moon RohJin Gun KooDae Woo LeeSang Gi KimIl Yong Park
    • H03L500
    • H03K19/0016
    • The present invention relates to an input and output port circuit. The input and output port circuit comprises a signal register for storing output signals, an input/output register at which an input/output control signal for determining an input/output direction is stored, a plurality of control registers, a power supply switch circuit for selectively supplying a low voltage or a high voltage depending on a power mode control signal, a signal direction control circuit for determining the direction of the signal depending on a value of the signal register and a value of the input/output register, an output control circuit driven depending on the value of the control register and an output of the signal direction control circuit, and an output driving circuit for outputting the low voltage, the high voltage or the ground value depending on an output of the signal direction control circuit and an output of the output control circuit. The high voltage and the low voltage can be simultaneously driven using only a single output driving circuit and the single output driving circuit is constructed in multiple stages and is selectively driven by the output control register. Therefore, the power consumption can be saved.
    • 本发明涉及输入和输出端口电路。 输入输出端口电路包括用于存储输出信号的信号寄存器,存储用于确定输入/输出方向的输入/输出控制信号的输入/输出寄存器,多个控制寄存器,用于 选择性地根据功率模式控制信号提供低电压或高电压;信号方向控制电路,用于根据信号寄存器的值确定信号的方向,以及输入/输出寄存器的值,输出控制 电路根据控制寄存器的值和信号方向控制电路的输出驱动,以及输出驱动电路,用于根据信号方向控制电路的输出输出低电压,高电压或接地值,以及 输出控制电路的输出。 高电压和低电压可以使用单个输出驱动电路同时驱动,单输出驱动电路构成多级,由输出控制寄存器有选择地驱动。 因此,可以节省功耗。
    • 7. 发明授权
    • Method for fabricating semiconductor power integrated circuit
    • 制造半导体功率集成电路的方法
    • US06284605B1
    • 2001-09-04
    • US09428403
    • 1999-10-28
    • Jong-Dae KimSang-Gi KimJin-Gun KooDae-Yong Kim
    • Jong-Dae KimSang-Gi KimJin-Gun KooDae-Yong Kim
    • H01L21336
    • H01L21/84H01L21/76264H01L21/76283H01L27/1203
    • A method for fabricating a semiconductor power integrated circuit includes the steps of forming a semiconductor structure having at least one active region, wherein an active region includes a well region for forming a source and a drift region for forming a drain region, forming a trench for isolation of the active regions, wherein the trench has a predetermined depth from a surface of the semiconductor structure, forming a first TEOS-oxide layer inside the trench and above the semiconductor structure, wherein the first TEOS-oxide layer has a predetermined thickness from the surface of the semiconductor device, forming a second TEOS-oxide layer on the first TEOS-oxide layer, wherein a thickness of the second TEOS-oxide layer is smaller than that of the first TEOS-oxide layer, and performing a selective etching to the first and second TEOS-oxide layers, to thereby simultaneously form a field oxide layer pattern, a diode insulating layer pattern and a gate oxide layer pattern, to thereby reduce processing steps and obtain a low on-resistance.
    • 一种制造半导体功率集成电路的方法包括以下步骤:形成具有至少一个有源区的半导体结构,其中有源区包括用于形成源的阱区和用于形成漏极区的漂移区,形成用于 有源区的隔离,其中沟槽具有来自半导体结构的表面的预定深度,在沟槽内部和半导体结构之上形成第一TEOS氧化物层,其中第一TEOS氧化物层具有来自该半导体结构的预定厚度 在所述第一TEOS氧化物层上形成第二TEOS氧化物层,其中所述第二TEOS氧化物层的厚度小于所述第一TEOS氧化物层的厚度,并且对所述第一TEOS氧化物层进行选择性蚀刻 第一和第二TEOS氧化物层,从而同时形成场氧化物层图案,二极管绝缘层图案和栅极氧化物层图案 y减少加工步骤并获得低导通电阻。
    • 9. 发明授权
    • High-quality CMOS image sensor and photo diode
    • 高质量CMOS图像传感器和光电二极管
    • US07741665B2
    • 2010-06-22
    • US11872922
    • 2007-10-16
    • Jin Yeong KangJin Gun KooSang Heung Lee
    • Jin Yeong KangJin Gun KooSang Heung Lee
    • H01L31/062H01L31/113
    • H01L27/14689H01L27/14609
    • Provided are a high-quality CMOS image sensor and a photo diode, which can be fabricated in sub-90 nm regime using nanoscale CMOS technology. The photo diode includes: a p-type well; an internal n-type region formed under a surface of the p-type well; and a surface p-type region including a highly doped p-type SiGeC epitaxial layer or a polysilicon layer deposited on a top surface of the p-type well over the internal n-type region. The image sensor includes: a photo diode including an internal n-type region and a surface p-type region; a transfer transistor for transmitting photo-charges generated in the photo diode to a floating diffusion node; and a driving transistor for amplifying a variation in an electric potential of the floating diffusion node due to the photo-charges. The image sensor further includes a floating metal layer for functioning as the floating diffusion node and applying an electric potential from a drain of the transfer transistor to a gate of the driving transistor.
    • 提供了一种高质量CMOS图像传感器和光电二极管,其可以使用纳米级CMOS技术在亚90nm范围内制造。 光电二极管包括:p型阱; 形成在p型阱的表面下的内部n型区域; 以及表面p型区域,其包括在内部n型区域上沉积在p型阱的顶表面上的高掺杂p型SiGeC外延层或多晶硅层。 图像传感器包括:包含内部n型区域和表面p型区域的光电二极管; 用于将在光电二极管中产生的光电荷传输到浮动扩散节点的传输晶体管; 以及用于放大由于光电荷引起的浮动扩散节点的电位变化的驱动晶体管。 图像传感器还包括浮动金属层,用作浮动扩散节点并将电势从传输晶体管的漏极施加到驱动晶体管的栅极。