会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same
    • 通过化学气相沉积形成金属氮化物膜的方法和使用其形成金属接触和半导体器件的电容器的方法
    • US06348376B2
    • 2002-02-19
    • US09765531
    • 2001-01-19
    • Hyun-Seok LimSang-Bom KangIn-Sang JeonGil-Heyun Choi
    • Hyun-Seok LimSang-Bom KangIn-Sang JeonGil-Heyun Choi
    • H01L218242
    • H01L21/76843C23C16/34C23C16/45553H01L21/28562H01L21/76804H01L28/91
    • A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A/cycle, is suitable for mass production.
    • 提供了使用化学气相沉积(CVD)形成金属氮化物膜的方法,以及使用其形成半导体器件的金属接触和半导体电容器的方法。 使用其中使用金属源和氮源作为前体的化学气相沉积(CVD)形成金属氮化物膜的方法包括以下步骤:将半导体衬底插入淀积室中,使金属源流入沉积物 通过切断金属源的流入并将净化气体流入沉积室,去除沉积室中残留的金属源,切断净化气体并使氮源流入沉积室以与金属源反应 吸附在半导体衬底上,并且通过切断氮源的流入并将净化气体流入沉积室来除去留在沉积室中的氮源。 因此,可以在500℃以下的温度下形成具有低电阻率和低Cl含量的金属氮化物膜,并且可以制造具有优异的漏电流特性的半导体电容器。 此外,大约20A /周的沉积速度适合于批量生产。
    • 7. 发明授权
    • Method of delivering gas into reaction chamber and shower head used to deliver gas
    • 将气体输送到用于输送气体的反应室和淋浴喷头中的方法
    • US06478872B1
    • 2002-11-12
    • US09467313
    • 1999-12-20
    • Yun-sook ChaeIn-sang JeonSang-bom KangSang-in LeeKyu-wan Ryu
    • Yun-sook ChaeIn-sang JeonSang-bom KangSang-in LeeKyu-wan Ryu
    • C30B2500
    • C30B25/14C23C16/45548C23C16/45565C23C16/45574
    • A method of delivering two or more mutually-reactive reaction gases when a predetermined film is deposited on a substrate, and a shower head used in the gas delivery method, function to increase the film deposition rate while preventing formation of contaminating particles. In this method, one reaction gas is delivered toward the edge of the substrate, and the other reaction gases are delivered toward the central portion of the substrate, each of the reaction gases being delivered via an independent gas outlet to prevent the reaction gases from being mixed. In the shower head, separate passages are provided to prevent the first reaction gas from mixing with the other reaction gases by delivering the first reaction gas from outlets formed around the edge of the bottom surface of the shower head. The other reaction gases are delivered from outlets formed in the central portion of the bottom surface of the shower head. Accordingly, one of the mutually-reactive gases is delivered toward the central portion of the substrate, and the others are delivered toward the edge of the substrate.
    • 当将预定的膜沉积在基底上时输送两个或更多个相互反应的反应气体的方法和用于气体输送方法的淋浴头的作用是提高膜沉积速率同时防止污染颗粒的形成。 在该方法中,一个反应气体被输送到基板的边缘,并且其它反应气体被输送到基板的中心部分,每个反应气体经由独立的气体出口输送,以防止反应气体 混合 在喷淋头中,设置分开的通道,以防止第一反应气体与其它反应气体混合,通过从喷淋头底表面的边缘周围形成的出口输送第一反应气体。 其他反应气体从形成在淋浴喷头的底面的中心部分的出口输送。 因此,相互反应的气体中的一种被输送到基板的中心部分,而其它的被传送到基板的边缘。
    • 8. 发明授权
    • Method of manufacturing a barrier metal layer using atomic layer deposition
    • 使用原子层沉积制造阻挡金属层的方法
    • US06399491B2
    • 2002-06-04
    • US09826946
    • 2001-04-06
    • In-sang JeonSang-bom KangHyun-seok LimGil-heyun Choi
    • In-sang JeonSang-bom KangHyun-seok LimGil-heyun Choi
    • H01L2144
    • C23C16/45531C23C16/45527H01L21/28556H01L21/28562H01L21/76841H01L21/76843H01L21/7685
    • A method of manufacturing a barrier metal layer uses atomic layer deposition (ALD) as the mechanism for depositing the barrier metal. The method includes supplying a first source gas onto the entire surface of a semiconductor substrate in the form of a pulse, and supplying a second source gas, which reacts with the first source gas, onto the entire surface of the semiconductor substrate in the form of a pulse. In a first embodiment, the pulses overlap in time so that the second source gas reacts with part of the first source gas physically adsorbed at the surface of the semiconductor substrate to thereby form part of the barrier metal layer by chemical vapor deposition whereas another part of the second source gas reacts with the first source gas chemically adsorbed at the surface of the semiconductor substrate to thereby form part of the barrier metal layer by atomic layer deposition. Thus, the deposition rate is greater than if the barrier metal layer were only formed by ALD. In the second embodiment, an impurity-removing gas is used to remove impurities in the barrier metal layer. Thus, even if the gas supply scheme is set up to only use ALD in creating the barrier metal layer, the deposition rate can be increased without the usual accompanying increase in the impurity content of the barrier metal layer.
    • 制造阻挡金属层的方法使用原子层沉积(ALD)作为沉积阻挡金属的机理。 该方法包括以脉冲的形式将第一源气体提供到半导体衬底的整个表面上,并将与第一源气体反应的第二源气体以 一脉 在第一实施例中,脉冲在时间上重叠,使得第二源气体与物理吸附在半导体衬底的表面处的第一源气体的一部分反应,从而通过化学气相沉积形成阻挡金属层的一部分,而另一部分 第二源气体与化学吸附在半导体衬底的表面上的第一源气体反应,从而通过原子层沉积形成阻挡金属层的一部分。 因此,如果阻挡金属层仅由ALD形成,则沉积速率更大。 在第二实施例中,使用杂质去除气体来除去阻挡金属层中的杂质。 因此,即使将气体供给方案设定为仅使用ALD来制造阻挡金属层,也可以提高成膜速度,而​​不会妨碍阻挡金属层的杂质含量的增加。
    • 9. 发明授权
    • Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
    • 使用原子层沉积形成金属层的方法和具有金属层作为阻挡金属层或电容器的上或下电极的半导体器件
    • US06287965B1
    • 2001-09-11
    • US09511598
    • 2000-02-23
    • Sang-bom KangHyun-seok LimYung-sook ChaeIn-sang JeonGil-heyun Choi
    • Sang-bom KangHyun-seok LimYung-sook ChaeIn-sang JeonGil-heyun Choi
    • H01L2144
    • H01L21/7687C23C16/34C23C16/45529H01L21/28562H01L21/76843H01L21/76846H01L21/76849H01L21/76865H01L28/75
    • A method of forming a metal layer having excellent thermal and oxidation resistant characteristics using atomic layer deposition is provided. The metal layer includes a reactive metal (A), an element (B) for the amorphous combination between the reactive metal (A) and nitrogen (N), and nitrogen (N). The reactive metal (A) may be titanium (Ti), tantalum (Ta), tungsten (W), zirconium (Zr), hafnium (Hf), molybdenum (Mo) or niobium (Nb). The amorphous combination element (B) may be aluminum (Al), silicon (Si) or boron (B). The metal layer is formed by alternately injecting pulsed source gases for the elements (A, B and N) into a chamber according to atomic layer deposition to thereby alternately stack atomic layers. Accordingly, the composition ratio of a nitrogen compound (A—B—N) of the metal layer can be desirably adjusted just by appropriately determining the number of injection pulses of each source gas. According to the composition ratio, a desirable electrical conductivity and resistance of the metal layer can be accurately obtained. The atomic layers are individually deposited, thereby realizing excellent step coverage even in a complex and compact region. A metal layer formed by atomic layer deposition can be employed as a barrier metal layer, a lower electrode or an upper electrode in a semiconductor device.
    • 提供了使用原子层沉积形成具有优异的耐热和抗氧化特性的金属层的方法。 金属层包括反应性金属(A),用于反应性金属(A)和氮(N)之间的无定形组合的元素(B)和氮(N))。 反应性金属(A)可以是钛(Ti),钽(Ta),钨(W),锆(Zr),铪(Hf),钼(Mo)或铌(Nb)。 无定形组合元件(B)可以是铝(Al),硅(Si)或硼(B)。 通过根据原子层沉积将元件(A,B和N)的脉冲源气体交替地注入到室中来形成金属层,从而交替堆叠原子层。 因此,通过适当确定各源气体的喷射脉冲数,可以适当地调整金属层的氮化合物(A-B-N)的组成比。 根据组成比,可以准确地获得金属层所需的导电性和电阻。 原子层分别沉积,即使在复杂和紧凑的区域中也能实现优异的阶梯覆盖。 通过原子层沉积形成的金属层可以用作半导体器件中的阻挡金属层,下电极或上电极。