会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • High efficiency gettering in silicon through localized superheated melt
formation
    • 通过局部过热熔体形成,高效吸收硅
    • US4257827A
    • 1981-03-24
    • US93485
    • 1979-11-13
    • Guenter H. SchwuttkeKuei-Hsiung Yang
    • Guenter H. SchwuttkeKuei-Hsiung Yang
    • H01L21/268H01L21/322H01L21/265B23K27/00
    • H01L21/3221H01L21/268Y10S148/09Y10S148/093
    • A semiconductor wafer into which devices such as an integrated circuit is to be formed is gettered by regions in the wafer activated by a laser beam. The laser beam is directed onto the surface of the wafer opposite to that where the devices are to be formed. The power input to the laser is controlled such that the surface temperature of the region of the semiconductor wafer where the laser beam is applied first reaches the melting point of the material, such as silicon, and the melting commences. Then the temperature in the melt rises above the melting temperature, but stays below the boiling temperature of the material of the wafer. A superheated melt is formed. The result is that the solid-liquid interface moves deep into the material. The position of the melt is directly under the laser beam. The solidified material is positioned behind the beam as the beam scans the wafer. A depression is formed under the beam while the material rises behind the laser beam. This depression effect of the laser beam causes the beam to penetrate relatively deeply into the material. The superheated melt of this type has been found to be useful in the activation of internal gettering centers as opposed to crystal damage by a higher powered laser beam. These internal gettering centers, which may be oxygen complexes or the like, then act as gettering sites for unwanted impurities during subsequent heat treatment of the semiconductor wafer.
    • 要形成集成电路等器件的半导体晶片被激光束激活的晶片中的区域所吸收。 激光束被引导到与将要形成器件的晶片相反的晶片表面上。 控制输入​​到激光器的功率,使得施加激光束的半导体晶片的区域的表面温度首先达到诸如硅的材料的熔点,并且熔化开始。 然后熔体中的温度升高到熔融温度以上,但保持低于晶片材料的沸腾温度。 形成过热熔体。 结果是固液界面深深地移动到材料中。 熔体的位置直接位于激光束的下面。 当光束扫描晶片时,固化的材料位于光束后面。 当材料在激光束后面时,在光束下方形成凹陷。 激光束的这种抑制效应使得光束相对深入地穿透到材料中。 已经发现,这种类型的过热熔体可用于激活内部吸气中心,而不是通过较高功率的激光束的晶体损伤。 这些内部吸气中心(其可以是氧配合物等)随后在随后的半导体晶片的热处理期间用作不需要的杂质的吸杂位置。
    • 6. 发明授权
    • Impact sound stressing for semiconductor devices
    • 半导体器件的冲击声应力
    • US4018626A
    • 1977-04-19
    • US612164
    • 1975-09-10
    • Guenter H. SchwuttkeKuei-Hsiung Yang
    • Guenter H. SchwuttkeKuei-Hsiung Yang
    • H01L21/205H01L21/265H01L21/304H01L21/322
    • H01L21/02381H01L21/02532H01L21/26506H01L21/304H01L21/3221Y10S148/06Y10S148/061Y10S148/097
    • Methods of making semiconductor devices using the technique of impact sound stressing are disclosed. Impact sound stressing (ISS) is a mechanical acoustical technique to damage, in a known and controlled manner, semiconductor wafers. Wafers are subjected to ISS on the backsides before semiconductor processing steps. The application of ISS before the first high temperature application will control the generation and subsequent direction of flow (gradient) of vacancies (interstitials) generated through all device high temperature processing steps including ion implantation. ISS redirects the flow of vacancies/interstitials into the backside away from the device area of the wafer. Thus, the device area is swept clean in a gettering action of vacancy/interstitials and their complexes which are detrimental to device performance. The technique of impact sound stressing finds application in improving the performance of all semiconductor devices, specifically dynamic memories, bipolars, solar cells and power devices.
    • 公开了使用冲击声应力技术制造半导体器件的方法。 冲击声应力(ISS)是一种机械声学技术,以已知和受控的方式损坏半导体晶圆。 在半导体处理步骤之前,晶片在背面经受ISS。 ISS在第一次高温应用之前的应用将控制通过包括离子注入的所有器件高温处理步骤产生的空位(间隙)的产生和随后的流动方向(梯度)。 ISS将空位/间隙的流动重定向到远离晶片的器件区域的背面。 因此,器件区域以空白/间隙及其复合物的吸气作用扫过干净,这对器件性能是不利的。 冲击声应力技术应用于提高所有半导体器件,特别是动态存储器,双极,太阳能电池和功率器件的性能。
    • 7. 发明授权
    • Impact sound stressing for semiconductors
    • 半导体的冲击声应力
    • US4004449A
    • 1977-01-25
    • US591922
    • 1975-06-30
    • Edward F. GoreyGuenter H. Schwuttke
    • Edward F. GoreyGuenter H. Schwuttke
    • G01N3/32H01L21/304
    • H01L21/304G01N3/32
    • Apparatus for acoustical stressing of semiconductor wafers is disclosed, utilizing a number of small tungsten balls which are bounced on the surface of the wafer to be stressed. The movement of the tungsten balls is effectuated by clamping a wafer at one end of a conduit, the other end being attached to a high intensity loudspeaker. The loudspeaker is driven at resonant frequency of the clamped wafer and accordingly the tungsten balls bounce on the surface. This impact creates micro-cracks on the surface of the wafer and number and depth of these cracks can be controlled by power input and the number of tungsten balls utilized. Controlled stressing can thereby be accomplished both in terms of density of micro-cracks and location on the wafer.Impact sound stressing finds utilization in the study of semi-conductor surfaces to determine effects of dislocations and micro-splits and in the evaluation of wafer polishing techniques. Structural changes in the original defect pattern due to oxidation can be studied and a cause and effect relationship between damage and oxidation established. The study of surface characteristics affecting many semi-conductor phenomena such as effective lifetime, noise, and contact potentials can be made in a controlled manner. Modern wafer polishing methods such as the cupric ion or silicon dioxide technique and others can be evaluated in terms of effectiveness of damage removal.
    • 公开了一种用于半导体晶片的声学应力的装置,其利用在晶片表面上反弹以应力的多个小钨球。 钨球的移动通过在管道的一端夹紧晶片而实现,另一端附接到高强度扬声器。 扬声器以夹持的晶片的谐振频率驱动,因此钨球在表面上弹起。 这种冲击在晶片表面产生微裂纹,这些裂纹的数量和深度可以通过功率输入和所使用的钨球的数量进行控制。 从而可以在微裂纹的密度和晶片上的位置方面实现受控应力。