会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Method of Fabricating a Duel-Gate Fet
    • 制造决斗门的方法
    • US20080318375A1
    • 2008-12-25
    • US11815100
    • 2006-01-23
    • Wibo Daniel Van NoortFranciscus Petrus WiddershovenRadu Surdeanu
    • Wibo Daniel Van NoortFranciscus Petrus WiddershovenRadu Surdeanu
    • H01L21/8238
    • H01L29/785H01L29/66795H01L29/7854
    • The invention provides a method of fabricating an extremely short-length dual-gate FET, using conventional semi-conductor processing techniques, with extremely small and reproducible fins with a pitch and a width that are both smaller than can be obtained with photolithographic techniques. On a protrusion (2) on a substrate (1), a first layer (3) and a second layer (4) are formed, after which the top surface of the protrusion (2) is exposed. A portion of the first layer (3) is selectively removed relative to the protrusion (2) and the second layer (4), thereby creating a fin (6) and a trench (5). Also a method is presented to form a plurality of fins (6) and trenches (5). The dual-gate FET is created by forming a gate electrode (7) in the trench(es) (5) and a source and drain region. Further a method is presented to fabricate an extremely short-length asymmetric dual-gate FET with two gate electrodes that can be biased separately.
    • 本发明提供了一种使用常规半导体处理技术制造极短的双栅极FET的方法,其具有非常小且可重现的鳍,其间距和宽度都小于可以用光刻技术获得的。 在基板(1)上的突起(2)上形成第一层(3)和第二层(4),然后露出突起(2)的上表面。 相对于突起(2)和第二层(4),第一层(3)的一部分被选择性地去除,从而形成翅片(6)和沟槽(5)。 还提出了形成多个翅片(6)和沟槽(5)的方法。 通过在沟槽(5)中形成栅电极(7)和源极和漏极区域来产生双栅极FET。 此外,提出了一种制造具有可分别偏置的两个栅电极的极短的非对称双栅极FET的方法。
    • 6. 发明授权
    • Self-aligned 2-bit “double poly CMP” flash memory cell
    • 自对准2位“双多晶CMP”闪存单元
    • US07214579B2
    • 2007-05-08
    • US10532292
    • 2002-08-18
    • Franciscus Petrus WiddershovenMichiel Jos Van Duuren
    • Franciscus Petrus WiddershovenMichiel Jos Van Duuren
    • H01L21/8239
    • G11C16/0458H01L27/115H01L27/11521
    • Fabrication of a memory cell, the cell including a first floating gate stack (A), a second floating gate stack (B) and an intermediate access gate (AG), the floating gate stacks (A, B) including a first gate oxide (4), a floating gate (FG), a control gate (CG; CGl, CGu), an interpoly dielectric layer (8), a capping layer (6) and side-wall spacers (10), the cell further including source and drain contacts (22), wherein the fabrication includes: defining the floating gate stacks in the same processing steps to have equal heights; depositing over the floating gate stacks a poly-Si layer (12) with a larger thickness than the floating gate stacks' height; planarizing the poly-Si layer (12); defining the intermediate access gate (AG) in the planarized poly-Si layer (14) by means of an access gate masking step over the poly-Si layer between the floating gate stacks and a poly-Si etching step.
    • 存储单元的制造,该单元包括第一浮栅堆叠(A),第二浮栅堆叠(B)和中间存取栅极(AG),所述浮栅叠层(A,B)包括第一栅氧化层 4),浮动栅极(FG),控制栅极(CG; CG1,CGu),多晶硅间介电层(8),封盖层(6)和侧壁间隔物(10) 漏极触点(22),其中所述制造包括:在相同的处理步骤中限定所述浮栅堆叠以具有相同的高度; 在浮栅上沉积堆叠具有比浮栅堆叠高度更大的厚度的多晶硅层(12); 平面化多晶硅层(12); 通过在浮栅堆叠之间的多晶硅层和多晶硅蚀刻步骤之间的存取栅掩模步骤,在平坦化的多晶硅层(14)中限定中间栅极(AG)。
    • 7. 发明授权
    • Data processing device with a memory location in which data is stored according to a WOM (write once memory) code
    • 具有根据WOM(一次写入存储器)代码存储数据的存储器位置的数据处理设备
    • US07177974B2
    • 2007-02-13
    • US10755238
    • 2004-01-12
    • Sebastian EgnerFranciscus Petrus Widdershoven
    • Sebastian EgnerFranciscus Petrus Widdershoven
    • G11C17/00G11C7/10
    • G11C17/005
    • A device contains a memory that stores a WOM codeword that encodes successive generations of data values. When the codeword must be updated to represent a new data value, the device determines which updates of the dataword can be realized by feasible single bit updates to the WOM (Write Once Memory) codeword. If no feasible single bit update is possible, feasible two-bit updates are considered. Under control of the new data values a connection circuit routes feasibility signals for various updates, that signal the single-bit feasibility of the updates. Routing brings together pairs of feasibility signals for updates that together produce a WOM codeword that encodes the new data value. A pair is selected in which both feasibility signals indicate feasibility and the codeword is updated according to the updates involved in the pair. Preferably, the routing is realized with a connection circuit that comprises a number of layers of subcircuits, each routing the feasibility signals dependent on a respective bit of the new dataword. Also preferably, the WOM code is designed so that each of a number of updates to the data word can be realized by setting singles ones of a plurality of bits.
    • 设备包含存储编码连续几代数据值的WOM码字的存储器。 当代码字必须被更新以表示新的数据值时,设备通过对WOM(一次写入存储器)码字的可行单位更新来确定可以实现数据字的哪些更新。 如果没有可行的单比特更新是可行的,则考虑可行的两比特更新。 在新的数据值的控制下,一个连接电路可以路由各种更新的可行性信号,这些信号表明更新的单位可行性。 路由汇总了可用信号对,用于一起生成编码新数据值的WOM码字的更新。 选择一对,其中两个可行性信号指示可行性,并且根据该对中涉及的更新来更新码字。 优选地,路由通过包括多个子电路层的连接电路实现,每个子电路依赖于新数据字的相应位来路由可行性信号。 还优选地,WOM码被设计为使得可以通过设置多个比特的单个数目来实现数据字的多个更新中的每一个。
    • 9. 发明授权
    • Method of manufacturing a semiconductor device with non-volatile memory comprising a memory cell with an access gate and with a control gate and a charge storage region
    • 制造具有非易失性存储器的半导体器件的方法,包括具有存取栅极的存储单元以及控制栅极和电荷存储区域
    • US06984558B2
    • 2006-01-10
    • US10485496
    • 2002-06-04
    • Michiel SlotboomFranciscus Petrus Widdershoven
    • Michiel SlotboomFranciscus Petrus Widdershoven
    • H01L21/336
    • H01L27/11568H01L21/28273H01L27/11521H01L29/42328H01L29/66825H01L29/7883
    • Method of manufacturing a semiconductor device comprising a semiconductor body (1) which is provided at a surface (2) with a non-volatile memory comprising a memory cell with a gate structure (4) with an access gate (19) and a gate structure (3) with a control gate (5) and a charge storage region situated between the control gate (5) and the semiconductor body (1), such as a floating gate (6). In this method on the surface (2) of the semiconductor body (1) a first one of said gate structures is formed with side walls (10) extending substantially perpendicular to the surface, a conductive layer is deposited (13) on and next to said first gate-structure, the conductive layer is subjected to a planarizing treatment until the first gate structure is exposed and the so planarized conductive layer is patterned so as to form at least a part of the other gate structure adjoining the first gate structure. Said patterning of the planarized conductive layer is performed in that the planarized conductive layer (14) is etched back so as to expose an upper portion (15) of the side walls of the first gate structure, a spacer (18) is formed on the exposed upper portion (15) of the side walls of first gate structure and the conductive layer (16) is etched anisotropically using the spacer as a mask. Thus very small memory cells can be realized.
    • 一种制造半导体器件的方法,包括:半导体本体(1),其在表面(2)处设置有非易失性存储器,所述非易失性存储器包括具有栅极结构(4)的存储单元,所述存储单元具有存取栅极(19)和栅极结构 (5)和位于控制栅极(5)和半导体本体(1)之间的电荷存储区域(例如浮动栅极)。 在这种方法中,在半导体本体(1)的表面(2)上,第一个所述栅极结构形成有大致垂直于所述表面延伸的侧壁(10),导电层被沉积(13) 所述第一栅极结构,对导电层进行平坦化处理,直到第一栅极结构暴露,并且将如此平坦化的导电层图案化,以形成与第一栅极结构相邻的另一栅极结构的至少一部分。 平面化导电层的所述图案化是以平坦化的导电层(14)被回蚀以便露出第一栅极结构的侧壁的上部(15)来实现的,间隔物(18)形成在 使用间隔物作为掩模,各向异性地蚀刻第一栅极结构的侧壁的暴露的上部(15)和导电层(16)。 因此,可以实现非常小的存储单元。