会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Dynamic controller for controlling a system
    • 用于控制系统的动态控制器
    • US07050866B2
    • 2006-05-23
    • US10847211
    • 2004-05-17
    • Gregory D. MartinEugene BoeStephen PicheJames David KeelerDouglas TimmerMark GerulesJohn P. Havener
    • Gregory D. MartinEugene BoeStephen PicheJames David KeelerDouglas TimmerMark GerulesJohn P. Havener
    • G05B13/02
    • G05B17/02G05B13/048
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y. Additionally, the path that is traversed between steady-state value changes.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 b)对动态模型(22)的增益有直接的影响。 这通过系数修改块(40)来促进。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.此外,在稳态值变化之间经过的路径。
    • 7. 发明授权
    • Method for operating a neural network with missing and/or incomplete data
    • 用于操作具有丢失和/或不完整数据的神经网络的方法
    • US5842189A
    • 1998-11-24
    • US936679
    • 1997-09-27
    • James David KeelerEric Jon HartmanRalph Bruce Ferguson
    • James David KeelerEric Jon HartmanRalph Bruce Ferguson
    • G06F15/18G06F17/17G06N3/04G06N3/08
    • G06N3/0472G06F17/17G06N3/049
    • A neural network system is provided that models the system in a system model (12) with the output thereof providing a predicted output. This predicted output is modified or controlled by an output control (14). Input data is processed in a data preprocess step (10) to reconcile the data for input to the system model (12). Additionally, the error resulted from the reconciliation is input to an uncertainty model to predict the uncertainty in the predicted output. This is input to a decision processor (20) which is utilized to control the output control (14). The output control (14) is controlled to either vary the predicted output or to inhibit the predicted output whenever the output of the uncertainty model (18) exceeds a predetermined decision threshold, input by a decision threshold block (22). Additionally, a validity model (16) is also provided which represents the reliability or validity of the output as a function of the number of data points in a given data region during training of the system model (12). This predicts the confidence in the predicted output which is also input to the decision processor (20). The decision processor (20) therefore bases its decision on the predicted confidence and the predicted uncertainty. Additionally, the uncertainty output by the data preprocess block (10) can be utilized to train the system model (12).
    • 提供了一种神经网络系统,其在系统模型(12)中对系统进行建模,其输出提供预测输出。 该预测输出由输出控制(14)修改或控制。 在数据预处理步骤(10)中处理输入数据,以便调整用于输入到系统模型(12)的数据。 另外,由和解产生的误差被输入到不确定性模型中,以预测预测输出的不确定性。 这被输入到用于控制输出控制(14)的决策处理器(20)。 控制输出控制器(14),以便在不确定性模型(18)的输出超过由判定阈值块(22)输入的预定判定阈值时改变预测输出或禁止预测输出。 此外,还提供了有效性模型(16),其表示在系统模型(12)的训练期间作为给定数据区域中的数据点的数量的函数的输出的可靠性或有效性。 这预测了也输入到决策处理器(20)的预测输出的置信度。 因此,决策处理器(20)将其决定基于预测的置信度和预测的不确定性。 此外,可以利用数据预处理块(10)输出的不确定性来训练系统模型(12)。
    • 10. 发明授权
    • Method for operating a neural network with missing and/or incomplete data
    • 用于操作具有丢失和/或不完整数据的神经网络的方法
    • US06169980A
    • 2001-01-02
    • US09167400
    • 1998-10-06
    • James David KeelerEric Jon HartmanRalph Bruce Ferguson
    • James David KeelerEric Jon HartmanRalph Bruce Ferguson
    • G06F1518
    • G06N3/0472G06F17/17G06N3/049
    • A neural network system is provided that models the system in a system model (12) with the output thereof providing a predicted output. This predicted output is modified or controlled by an output control (14). Input data is processed in a data preprocess step (10) to reconcile the data for input to the system model (12). Additionally, the error resulted from the reconciliation is input to an uncertainty model to predict the uncertainty in the predicted output. This is input to a decision processor (20) which is utilized to control the output control (14). The output control (14) is controlled to either vary the predicted output or to inhibit the predicted output whenever the output of the uncertainty model (18) exceeds a predetermined decision threshold, input by a decision threshold block (22). Additionally, a validity model (16) is also provided which represents the reliability or validity of the output as a function of the number of data points in a given data region during training of the system model (12). This predicts the confidence in the predicted output which is also input to the decision processor (20). The decision processor (20) therefore bases its decision on the predicted confidence and the predicted uncertainty. Additionally, the uncertainty output by the data preprocess block (10) can be utilized to train the system model (12).
    • 提供了一种神经网络系统,其在系统模型(12)中对系统进行建模,其输出提供预测输出。 该预测输出由输出控制(14)修改或控制。 在数据预处理步骤(10)中处理输入数据,以便调整用于输入到系统模型(12)的数据。 另外,由和解产生的误差被输入到不确定性模型中,以预测预测输出的不确定性。 这被输入到用于控制输出控制(14)的决策处理器(20)。 控制输出控制器(14),以便在不确定性模型(18)的输出超过由判定阈值块(22)输入的预定判定阈值时改变预测输出或禁止预测输出。 此外,还提供了有效性模型(16),其表示在系统模型(12)的训练期间作为给定数据区域中的数据点的数量的函数的输出的可靠性或有效性。 这预测了也输入到决策处理器(20)的预测输出的置信度。 因此,决策处理器(20)将其决定基于预测的置信度和预测的不确定性。 此外,可以利用数据预处理块(10)输出的不确定性来训练系统模型(12)。