会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • GESTURE RECOGNITION METHODS AND SYSTEMS
    • 识别方法和系统
    • US20110156999A1
    • 2011-06-30
    • US12813464
    • 2010-06-10
    • Cheng-Feng WuCheng-Yuan TangShih-Pin Chao
    • Cheng-Feng WuCheng-Yuan TangShih-Pin Chao
    • G09G5/00
    • G06K9/00335G06F3/017G06F3/04883G06K9/48
    • Gesture recognition methods and systems are provided. First, a plurality of gesture templates are provided, wherein each gesture template defines a first gesture characteristic and a corresponding specific gesture. Then, a plurality of images is obtained, and a multi-background model is generated accordingly. At least one object image is obtained according to the multi-background model, wherein the object image includes at least an object having a plurality of edges. The included angles of any two adjacent edges of the object image are gathered as statistics to obtain a second gesture characteristic corresponding to the object image. The second gesture characteristic of the object image is compared with the first gesture characteristic of each gesture template. The specific gesture corresponding to the first gesture characteristic is obtained, when the second gesture characteristic is similar to the first gesture characteristic.
    • 提供手势识别方法和系统。 首先,提供多个手势模板,其中每个手势模板定义第一手势特征和对应的特定手势。 然后,获得多个图像,并且相应地生成多背景模型。 根据多背景模型获得至少一个对象图像,其中对象图像至少包括具有多个边缘的对象。 将对象图像的任意两个相邻边缘的夹角作为统计信息进行收集,以获得与对象图像对应的第二手势特征。 将对象图像的第二手势特征与每个手势模板的第一手势特征进行比较。 当第二手势特征类似于第一手势特征时,获得对应于第一手势特征的特定手势。
    • 3. 发明授权
    • Method for producing image with depth by using 2D images
    • 使用2D图像生成深度图像的方法
    • US08180145B2
    • 2012-05-15
    • US12262158
    • 2008-10-30
    • Jeng-Feng WuWen-Chao ChenCheng-Yuan Tang
    • Jeng-Feng WuWen-Chao ChenCheng-Yuan Tang
    • G06K9/00
    • G06T7/596G06T2207/10012
    • A method for producing an image with depth by using 2D image includes obtaining a set of internal parameters of a camera. The camera takes at least a first and a second 2D images with a small shift. The first 2D image has N depths, and N≧2. Several sets of external parameters of the camera corresponding to the 2D images are estimated. A 3D information respectively corresponding to the N depths of the first 2D image at each pixel or block is calculated. A proper depth of each pixel or image block is determined. Through the internal parameters, the external parameters, and the N depths, each pixel or image block of the first 2D image is projected onto N positions of the second 2D image, so as to perform a matching comparison analysis with the second 2D image, thereby determining the proper depth from the N depths.
    • 通过使用2D图像来生成具有深度的图像的方法包括获得相机的一组内部参数。 相机拍摄至少具有小偏移的第一和第二2D图像。 第一2D图像具有N个深度,N≥2。 估计对应于2D图像的摄像机的几组外部参数。 计算分别对应于每个像素或块处的第一2D图像的N个深度的3D信息。 确定每个像素或图像块的适当深度。 通过内部参数,外部参数和N个深度将第一2D图像的每个像素或图像块投影到第二2D图像的N个位置上,以便与第二2D图像进行匹配比较分析,由此 从N个深度确定适当的深度。
    • 5. 发明申请
    • GESTURE RECOGNITION SYSTEM AND METHOD THEREOF
    • 识别识别系统及其方法
    • US20100194679A1
    • 2010-08-05
    • US12545340
    • 2009-08-21
    • Jun Mein WuWen Shiou LuoWei Yih HoChia Chen ChenCheng Yuan Tang
    • Jun Mein WuWen Shiou LuoWei Yih HoChia Chen ChenCheng Yuan Tang
    • G06K9/64G09G5/00G06T7/00
    • G06K9/00375
    • A gesture recognition system includes an image pick-up device, a processor, an operation engine, an optimal template selection means, and a display terminal. The image pick-up device is for capturing an image containing a natural gesture. The processor is for finding out a skin edge of a skin part from the image, and then classifying the skin edge into multiple edge parts at different angles. The operation engine has multiple parallel operation units and multiple gesture template libraries of different angle classes. These parallel operation units respectively find out gesture templates most resembling the edge parts in the gesture template libraries of different angle classes. The optimal template selection means selects an optimal gesture template from the resembling gesture templates found out by the parallel operation units. The display terminal is for displaying an image of the optimal gesture template. Thereby, marker-less and real-time gesture recognition is achieved.
    • 手势识别系统包括图像拾取装置,处理器,操作引擎,最佳模板选择装置和显示终端。 图像拾取装置用于捕获包含自然手势的图像。 处理器用于从图像中发现皮肤部分的皮肤边缘,然后将皮肤边缘分成不同角度的多个边缘部分。 操作引擎具有多个并行操作单元和多个不同角度类的多个手势模板库。 这些并行操作单元分别找出最类似于不同角度类的手势模板库中的边缘部分的手势模板。 最佳模板选择装置从由并行操作单元发现的类似手势模板中选择最佳手势模板。 显示终端用于显示最佳手势模板的图像。 从而实现无标记和实时手势识别。
    • 6. 发明申请
    • METHOD FOR PRODUCING IMAGE WITH DEPTH BY USING 2D IMAGES
    • 使用2D图像生成深度图像的方法
    • US20090169057A1
    • 2009-07-02
    • US12262158
    • 2008-10-30
    • Jeng-Feng WuWen-Chao ChenCheng-Yuan Tang
    • Jeng-Feng WuWen-Chao ChenCheng-Yuan Tang
    • G06K9/00
    • G06T7/596G06T2207/10012
    • A method for producing an image with depth by using 2D image includes obtaining a set of internal parameters of a camera. The camera takes at least a first and a second 2D images with a small shift. The first 2D image has N depths, and N≧2. Several sets of external parameters of the camera corresponding to the 2D images are estimated. A 3D information respectively corresponding to the N depths of the first 2D image at each pixel or block is calculated. A proper depth of each pixel or image block is determined. Through the internal parameters, the external parameters, and the N depths, each pixel or image block of the first 2D image is projected onto N positions of the second 2D image, so as to perform a matching comparison analysis with the second 2D image, thereby determining the proper depth from the N depths.
    • 通过使用2D图像来生成具有深度的图像的方法包括获得相机的一组内部参数。 相机拍摄至少具有小偏移的第一和第二2D图像。 第一个2D图像有N个深度,N> = 2。 估计对应于2D图像的摄像机的几组外部参数。 计算分别对应于每个像素或块处的第一2D图像的N个深度的3D信息。 确定每个像素或图像块的适当深度。 通过内部参数,外部参数和N个深度将第一2D图像的每个像素或图像块投影到第二2D图像的N个位置上,以便与第二2D图像进行匹配比较分析,由此 从N个深度确定适当的深度。
    • 8. 发明授权
    • Gesture recognition methods and systems
    • 手势识别方法和系统
    • US08417026B2
    • 2013-04-09
    • US12813464
    • 2010-06-10
    • Cheng-Feng WuCheng-Yuan TangShih-Pin Chao
    • Cheng-Feng WuCheng-Yuan TangShih-Pin Chao
    • G06K9/00
    • G06K9/00335G06F3/017G06F3/04883G06K9/48
    • Gesture recognition methods and systems are provided. First, a plurality of gesture templates are provided, wherein each gesture template defines a first gesture characteristic and a corresponding specific gesture. Then, a plurality of images is obtained, and a multi-background model is generated accordingly. At least one object image is obtained according to the multi-background model, wherein the object image includes at least an object having a plurality of edges. The included angles of any two adjacent edges of the object image are gathered as statistics to obtain a second gesture characteristic corresponding to the object image. The second gesture characteristic of the object image is compared with the first gesture characteristic of each gesture template. The specific gesture corresponding to the first gesture characteristic is obtained, when the second gesture characteristic is similar to the first gesture characteristic.
    • 提供手势识别方法和系统。 首先,提供多个手势模板,其中每个手势模板定义第一手势特征和对应的特定手势。 然后,获得多个图像,并且相应地生成多背景模型。 根据多背景模型获得至少一个对象图像,其中对象图像至少包括具有多个边缘的对象。 将对象图像的任意两个相邻边缘的夹角作为统计信息进行收集,以获得与对象图像对应的第二手势特征。 将对象图像的第二手势特征与每个手势模板的第一手势特征进行比较。 当第二手势特征类似于第一手势特征时,获得对应于第一手势特征的特定手势。
    • 9. 发明授权
    • Gesture recognition system and method thereof
    • 手势识别系统及其方法
    • US08269722B2
    • 2012-09-18
    • US12545340
    • 2009-08-21
    • Jun-Mein WuWen-Shiou LuoWei-Yih HoChia-Chen ChenCheng-Yuan Tang
    • Jun-Mein WuWen-Shiou LuoWei-Yih HoChia-Chen ChenCheng-Yuan Tang
    • G09G5/00G06K9/62G06K9/64
    • G06K9/00375
    • A gesture recognition system includes an image pick-up device, a processor, an operation engine, an optimal template selection means, and a display terminal. The image pick-up device is for capturing an image containing a natural gesture. The processor is for finding out a skin edge of a skin part from the image, and then classifying the skin edge into multiple edge parts at different angles. The operation engine has multiple parallel operation units and multiple gesture template libraries of different angle classes. These parallel operation units respectively find out gesture templates most resembling the edge parts in the gesture template libraries of different angle classes. The optimal template selection means selects an optimal gesture template from the resembling gesture templates found out by the parallel operation units. The display terminal is for displaying an image of the optimal gesture template. Thereby, marker-less and real-time gesture recognition is achieved.
    • 手势识别系统包括图像拾取装置,处理器,操作引擎,最佳模板选择装置和显示终端。 图像拾取装置用于捕获包含自然手势的图像。 处理器用于从图像中发现皮肤部分的皮肤边缘,然后将皮肤边缘分成不同角度的多个边缘部分。 操作引擎具有多个并行操作单元和多个不同角度类的多个手势模板库。 这些并行操作单元分别找出最类似于不同角度类的手势模板库中的边缘部分的手势模板。 最佳模板选择装置从由并行操作单元发现的类似手势模板中选择最佳手势模板。 显示终端用于显示最佳手势模板的图像。 从而实现无标记和实时手势识别。