会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Optimum design method and apparatus, and program for the same
    • 最佳设计方法和设备,以及相同的程序
    • US07676350B2
    • 2010-03-09
    • US11778367
    • 2007-07-16
    • Teruyoshi WashizawaAkira AsaiMasayoshi TachiharaKatsuhiko SinjoNobuhiro Yoshikawa
    • Teruyoshi WashizawaAkira AsaiMasayoshi TachiharaKatsuhiko SinjoNobuhiro Yoshikawa
    • G06F17/50G06G7/48
    • G06F17/11
    • In an optimum design method comprising a first solution determining step of solving an optimization problem of a first evaluation function for a state variable vector with a design variable vector being as a parameter, and a second solution determining step of solving an optimization problem of a second evaluation function for the design variable vector and the state variable vector thus obtained, the second solution determining step includes the steps of computing a gradient vector of the second evaluation function for the design variable vector, computing a first coefficient based on a value of a norm of the gradient vector, computing a search vector based on the first coefficient, computing a second coefficient, and updating the design variable vector based on the second coefficient. The second coefficient computing step includes the first solution determining step, the first solution determining step is executed as an iterative method based on the gradient vector, and the state variable vector is not initialized during iteration. The optimum design method is precisely adaptable for structural changes.
    • 一种最优设计方法,包括:第一解决方案确定步骤,用于以设计变量向量作为参数来求解用于状态变量向量的第一评估函数的优化问题;以及第二解决方案确定步骤,用于求解第二 第二解决方案确定步骤包括以下步骤:计算用于设计变量向量的第二评估函数的梯度向量,基于规范的值计算第一系数;对于设计变量向量和状态变量向量的评估函数, 的梯度向量,基于第一系数计算搜索向量,计算第二系数,并且基于第二系数更新设计变量向量。 第二系数计算步骤包括第一解决方案确定步骤,基于梯度向量作为迭代方法执行第一解决方案确定步骤,并且在迭代期间不初始化状态变量向量。 最佳设计方法适用于结构变化。
    • 7. 发明授权
    • Interpolation method, apparatus for carrying out the method, and control program for implementing the method
    • 插值方法,执行方法的装置以及用于实现该方法的控制程序
    • US07349936B2
    • 2008-03-25
    • US10632136
    • 2003-07-31
    • Akira AsaiShigeki Matsutani
    • Akira AsaiShigeki Matsutani
    • G06F7/38
    • G06F17/175
    • There is provided an interpolation method for the Volume-of-Fluid (VOF) applied to a two-phase incompressible fluid, in particular, which makes it possible to cause time evolution of a shape-describing function based on the Volume-of-Fluid (VOF) method while preserving a sharpness of a shape described by the function. The method defines a function F on a one-dimensional structured grid formed on a one-dimensional real region, the function being defined through definition of a value thereof at a center of each cell within the one-dimensional structured grid, as an interpolation function H. With respect to a cell of interest on the one-dimensional structured grid, a slope is set to zero if a forward difference and a backward difference of the function f have different signs, and to a value twice as large as a smaller one of absolute values of the forward difference and the backward difference if the forward difference and the backward difference have the same sign. The function F on a partial region of the one-dimensional real region determined by the cell of interest is defined by a linear function having a value of F0 at a center of the cell of interest and the slope.
    • 提供了一种应用于两相不可压缩流体的流体流体(VOF)的插值方法,特别地,这可以使基于流体体积的形状描述函数的时间演化 (VOF)方法,同时保持由该功能描述的形状的清晰度。 该方法定义了在一维实体区域上形成的一维结构网格上的函数F,该函数通过在一维结构化网格内的每个单元的中心定义其值作为内插函数来定义 对于一维结构化网格上的感兴趣的单元格,如果函数f的前向差和后向差具有不同的符号,则将斜率设置为零,并且将其设置为与小的两倍大的值 如果正向差和后向差具有相同的符号,则前向差和后向差的绝对值。 由感兴趣单元确定的一维实际区域的部分区域上的函数F由在关注单元格的中心处具有值F0的线性函数和斜率来定义。
    • 9. 发明授权
    • Information processing apparatus for numerically analyzing incompressible fluid and method therefor
    • 用于数值分析不可压缩流体的信息处理装置及其方法
    • US07203606B2
    • 2007-04-10
    • US11275142
    • 2005-12-15
    • Kota NakanoAkira Asai
    • Kota NakanoAkira Asai
    • G01F17/00
    • G06F17/5018G06F2217/16
    • During an incompressible fluid movement, three consecutive times during the movement of the fluid are called first, second, and third times in time order, calculation is performed with two different types of lattices for the first and third times and for the second time. Momentum and mass density at the first time are temporally developed to the third time in accordance with a conservation law by using an upwind velocity field. A pressure at the second time is determined so that a velocity field derived from momenta at the third time satisfies an incompressibility condition, and the field at the third time is corrected by adding a change in momentum caused by a pressure term using the determined pressure. This prevents pressure vibration and avoids the complexity of advective term calculation.
    • 在不可压缩的流体运动期间,在流体运动期间连续三次被称为第一次,第二次和第三次的时间顺序,对于第一次和第三次以及第二次以两种不同类型的格架进行计算。 第一次的动量和质量密度通过使用逆风速度场根据守恒定律在时间上发展到第三次。 确定第二次的压力使得从第三次的动量导出的速度场满足不可压缩条件,并且通过使用所确定的压力加上由压力项引起的动量变化来校正第三次的场。 这可以防止压力振动,避免平流项计算的复杂性。
    • 10. 发明授权
    • Optimization method with constraints and apparatus therefor
    • 具有限制和优化方法的优化方法
    • US07197486B2
    • 2007-03-27
    • US10192158
    • 2002-07-11
    • Akira AsaiShigeki Matsutani
    • Akira AsaiShigeki Matsutani
    • G06F7/10
    • G06Q10/04Y10S706/919
    • In a method for determining a minimum value of an optimization function under constraints given by equations, a set of points which satisfy the constraints is regarded as a Riemannian manifold within a finite-dimensional real-vector space, the Riemannian manifold is approached from an initial position within the real-vector space. An exponential map regarding a geodesic line equation with respect to a tangent vector on the Riemannian manifold ends at a finite order, an approximate geodesic line is generated as a one-dimensional orbit. An approximate parallel-translation is performed on the tangent vector on the Riemannian manifold and on the orbit generated in the orbit generating step by finite-order approximation of the exponential map regarding the parallel translation of the tangent vector. By repeating the above-described procedure from the position at which a minimum value is given until the minimum value on the orbit converges, the solution of the optimization problem with constraints is determined using a simple calculation procedure.
    • 在用等式确定的约束条件下确定优化函数的最小值的方法中,满足约束的一组点被认为是有限维实空间中的黎曼流形,黎曼流形从初始 在实数向量空间内的位置。 关于黎曼流形上的切线向量的测地线方程的指数图以有限的顺序结束,生成近似测线,作为一维轨道。 对黎曼流形上的切线向量和在轨道生成步骤中产生的轨道上的切线矢量进行近似平行平移,通过有限次逼近关于切线矢量的并行平移的指数图。 通过从给出最小值的位置重复上述过程直到轨道上的最小值收敛,使用简单的计算过程来确定具有约束的优化问题的解。