会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 82. 发明授权
    • High temperature amorphous semiconductor member and method of making the
same
    • 高温非晶半导体元件及其制造方法
    • US4177474A
    • 1979-12-04
    • US841369
    • 1977-10-12
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L29/04H01L31/0376H01L31/07H01L35/22H01L45/00
    • H01L35/22H01L29/04H01L31/0376H01L31/07Y02E10/50Y10S257/93
    • An amorphous semiconductor member which is capable of withstanding high temperatures and of having good toughness characteristics comprises an amorphous semiconductor material including a composition of a plurality elements, at least one of which is a low atomic weight element comprising boron, carbon, nitrogen or oxygen, formed in a solid amorphous host matrix having structural configuration which have local rather than long range order and electronic configurations providing an energy gap and an electrical activation energy. It also includes a modifier material added to the amorphous host matrix, such as a transition metal or rare earth element, having orbitals which interact with the amorphous host matrix and form electronic states in the energy gap which modify substantially the electronic configurations of the amorphous host matrix at room temperature and above. The amorphous semiconductor member may also comprise an amorphous host matrix formed from boron, carbon, silicon or germanium having a modifier material of boron or carbon added thereto. The forming of the amorphous host matrix and the adding of the modifier material is preferably done by cosputtering or the like.
    • 能够耐受高温且具有良好韧性的非晶半导体部件包括非晶半导体材料,其包含多个元素的组合物,其中至少一个是包含硼,碳,氮或氧的低原子量元素, 形成在具有结构构造的固体无定形主体基质中,所述结构构型具有局部而不是长范围的顺序,以及提供能隙和电活化能的电子构型。 它还包括添加到非晶主体基质(例如过渡金属或稀土元素)中的改性剂材料,其具有与非晶主体基质相互作用并且在能隙中形成电子状态的轨道,其基本上修饰了非晶态主体的电子结构 基质在室温及以上。 非晶半导体部件还可以包括由硼,碳,硅或锗形成的无定形主体基体,其具有添加硼或碳的改性材料。 非晶主体基体的形成和改性材料的添加优选通过溅射等进行。
    • 84. 发明申请
    • Thin Film Deposition via a Spatially-Coordinated and Time-Synchronized Process
    • 通过空间协调和时间同步过程进行薄膜沉积
    • US20120263886A1
    • 2012-10-18
    • US13459198
    • 2012-04-29
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • C23C16/50C23C16/511C23C16/505
    • H05H1/42C23C16/24C23C16/452C23C16/455C23C16/50H01L31/202Y02E10/50Y02P70/521
    • A system and process for the formation of thin film materials. The process includes forming a plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The system includes a deposition chamber having a plurality of delivery points for injecting two or more streams into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma.
    • 用于形成薄膜材料的系统和工艺。 该方法包括从第一材料流形成等离子体并允许等离子体在空间和/或时间内放出以熄灭对薄膜材料的质量有害的物质。 在等离子体发展到最佳状态之后,将第二材料流注入沉积室以形成包含更有利于形成高质量薄膜材料的物质分布的复合等离子体。 该系统包括具有多个输送点的沉积室,用于将两个或更多个流注入等离子体区域。 输送点在空间中交错,以允许在将下游材料流与等离子体组合之前,从第一材料流沉积源材料形成的上游等离子体放出。
    • 85. 发明授权
    • Plasma deposition of amorphous semiconductors at microwave frequencies
    • 微波等离子体沉积非晶半导体
    • US08273641B2
    • 2012-09-25
    • US12983203
    • 2010-12-31
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L21/00H01L21/36H01L21/20H01L21/205H01L21/469
    • H01L31/20H01J37/32192H01J37/32229H01J37/32357H01J37/3244H01J2237/3326H01L21/02532H01L21/02592H01L21/0262H01L31/035218H01L31/03767H01L31/1804H01L31/202Y02E10/547Y02P70/521
    • Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. One or more supplemental material streams may be delivered directly to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the one or more conduits to form a thin film material. Precursors for the microwave-excited deposition species include fluorinated forms of silicon. Precursors delivered as supplemental material streams include hydrogenated forms of silicon. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
    • 微波等离子体沉积薄膜光伏材料的设备和方法。 该装置避免了将微波能量耦合到沉积物质的窗户或其他微波传输元件上的非预期沉积。 该装置包括具有一个或多个通过其中的导管携带沉积物质的微波施加器。 施加器将微波能量传递到沉积物质以激活或激发它们至反应状态。 导管物理地隔离将在微波功率传递的点反应或以其它方式组合以形成薄膜材料的沉积物质,并将微波激发的物质输送到沉积室。 一个或多个补充材料流可以直接递送到沉积室而不通过微波施加器,并且可以与离开一个或多个管道的沉积物质组合以形成薄膜材料。 用于微波激发沉积物质的前体包括氟化形式的硅。 作为补充材料流输送的前体包括氢化形式的硅。 本发明允许超快速地形成显示高迁移率,低孔隙率,很少或没有Staebler-Wronski降解和低缺陷浓度的含硅非晶半导体。
    • 86. 发明申请
    • Photovoltaic Device Structure with Primer Layer
    • 具有引物层的光伏器件结构
    • US20120167984A1
    • 2012-07-05
    • US12983160
    • 2010-12-31
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L31/0376H01L31/18
    • H01L21/02532H01L21/0237H01L21/02439H01L21/0245H01L21/02505H01L21/0262H01L31/03767H01L31/03921H01L31/1824H01L31/202Y02E10/545Y02P70/521
    • Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process. The product materials exhibit high carrier mobility, high photovoltaic conversion efficiency, low porosity, little or no Staebler-Wronski degradation, and low concentrations of electronic and chemical defects.
    • 促进薄膜光伏材料在微波频率下高速等离子体沉积的器件结构。 器件结构包括底层,其在需要侵蚀性,高反应性沉积条件的层沉积期间屏蔽衬底和器件结构的下层。 底漆层通过高反应性沉积条件防止或抑制基材或下层的蚀刻或其它改性。 底漆层还通过防止或阻止元件从基底或下层进入沉积环境而减少器件结构的后续层的污染。 底漆层的存在延长了可用于形成光伏或半导体材料的沉积条件的范围,而不损害性能。 本发明允许在微波等离子体工艺中从氟化前体超快形成含硅非晶半导体。 产品材料表现出高载流子迁移率,高光电转换效率,低孔隙率,很少或没有Staebler-Wronski降解,以及低浓度的电子和化学缺陷。
    • 89. 发明申请
    • Process for Manufacturing Solar Cells including Ambient Pressure Plasma Torch Step
    • 包括环境压力等离子体火炬步骤的太阳能电池制造工艺
    • US20110086462A1
    • 2011-04-14
    • US12575859
    • 2009-10-08
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L31/0232
    • H01L31/206C23C16/513C23C16/545H01L31/0463H01L31/048H01L31/056H01L31/1884Y02E10/52Y02P70/521
    • A method of forming photovoltaic devices and modules that includes an ambient pressure thin film deposition step. The central combination of the photovoltaic device structure includes a back reflector layer, active photovoltaic material and transparent electrode. The central combination is formed on a substrate having an electrical isolation layer deposited thereon. The device structure may further include an overlying protective layer remote from the substrate and a laminate on the backside of the substrate. The individual devices may be interconnected in series via a patterning process to form a monolithically integrated module. Module fabrication is preferably performed in a continuous fashion. One or more steps of module fabrication are performed with a plasma torch. Use of a plasma torch simplifies the manufacturing process by enabling deposition of the electrical isolation and/or protective layers at ambient pressure, including in air. The resulting process simplification greatly improves the economics of thin film photovoltaic module manufacturing.
    • 一种形成包括环境压力薄膜沉积步骤的光伏器件和模块的方法。 光电器件结构的中心组合包括背反射层,活性光伏材料和透明电极。 中心组合形成在其上沉积有电绝缘层的基板上。 器件结构还可以包括远离衬底的覆盖保护层和衬底背面上的层压体。 各个装置可以通过图案化过程串联连接以形成单片集成模块。 模块制造优选以连续的方式进行。 使用等离子体焰炬进行模块制造的一个或多个步骤。 等离子体焰炬的使用通过在环境压力下包括空气中的电隔离和/或保护层的沉积来简化制造过程。 所得到的工艺简化大大提高了薄膜光伏组件制造的经济性。
    • 90. 发明授权
    • Multi-functional chalcogenide electronic devices having gain
    • 具有增益的多功能硫属化物电子器件
    • US07547906B2
    • 2009-06-16
    • US11438709
    • 2006-05-22
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L47/00
    • H01L45/1206H01L45/065H01L45/1233H01L45/141H01L45/142H01L45/143H01L45/144
    • Multi-functional electronic switching and current control device comprising a chalcogenide material. The devices include a load terminal, a reference terminal and a control terminal. Application of a control signal to the control terminal permits the device to function in one or more of the following modes reversibly: (1) a gain mode in which gain is induced in the current passing between the load and reference terminals; (2) a conductivity modulation mode in which the conductivity of the chalcogenide material between the load and reference terminals is modulated; (3) a current modulation mode in which the current or current density between the load and reference terminals is modulated; and/or (4) a threshold modulation mode in which the voltage required to switch the chalcogenide material between the load and reference terminals from a resistive state to a conductive state is modulated. The devices may be used as interconnection devices or signal providing devices in circuits and networks.
    • 包括硫属化物材料的多功能电子开关和电流控制装置。 这些设备包括负载端子,参考端子和控制端子。 将控制信号施加到控制终端允许装置在以下模式中的一个或多个模式下可逆地运行:(1)增益模式,其中在负载和参考端之间通过的电流中感生增益; (2)调制负载和参考端子之间的硫族化物材料的电导率的电导率调制模式; (3)调制负载和参考端子之间的电流或电流密度的电流调制模式; 和/或(4)阈值调制模式,其中将负载和参考端子之间的硫族化物材料从电阻状态切换到导通状态所需的电压被调制。 这些设备可以用作电路和网络中的互连设备或信号提供设备。