会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明授权
    • Continuous flow particle concentrator
    • 连续流粒子集中器
    • US07534336B2
    • 2009-05-19
    • US10838570
    • 2004-05-04
    • Armin R. VolkelMeng H. LeanH Ben HsiehJurgen H Daniel
    • Armin R. VolkelMeng H. LeanH Ben HsiehJurgen H Daniel
    • G01N27/453
    • B03C5/028G01N2030/0035
    • An apparatus for extracting and concentrating bioagents within a continuously flowing fluid medium includes a flow channel fluid inlet, in which bioagents are concentrated from three dimensions to a two-dimensional transport layer in a preconcentration area. Traveling wave grids cause the preconcentrated bioagents to migrate to one side of the flow channel and then to an extraction port. Each of the traveling wave grids includes a substrate, a collection of closely spaced and parallel electrically conductive electrodes extending across said substrate, and a collection of buses providing electrical communication with the collection of conductive electrodes. A voltage controller provides a multiphase electrical signal to the collection of buses and electrodes of the traveling wave grids. Fluid exits through an outlet port.
    • 用于在连续流动的流体介质中提取和浓缩生物体的装置包括流动通道流体入口,其中生物体从三维集中到预浓缩区域中的二维输送层。 旅行波谷使预浓缩的生物标签迁移到流动通道的一侧,然后迁移到提取口。 每个行波波谷包括基板,跨越所述基板的紧密间隔且平行的导电电极的集合,以及提供与导电电极集合电连通的总线的集合。 电压控制器提供多相电信号,用于收集行波网格的总线和电极。 流体通过出口排出。
    • 82. 发明授权
    • Sensing photons from object in channels
    • 从通道中的物体感应光子
    • US07479625B2
    • 2009-01-20
    • US12098584
    • 2008-04-07
    • Peter KieselMeng H. LeanOliver SchmidtArmin R. VolkelNoble M. Johnson
    • Peter KieselMeng H. LeanOliver SchmidtArmin R. VolkelNoble M. Johnson
    • G01J3/50
    • G01N21/05G01N21/645G01N21/65G01N21/658G01N2021/0346G01N2021/1734G01N2021/6421G01N2021/6482
    • A fluidic structure includes a channel and along the channel is a series of sensing components to obtain information about objects traveling within the channel, such as droplets or other objects carried by fluid. At least one sensing component includes a set of cells of a photosensor array. The set of cells photosense a range of photon energies that emanate from objects, and include a subset of cells that photosense within subranges. A processor can receive information about objects from the sensing components and use it to obtain spectral information. The processor can perform an initial analysis using information from one set of sensing components and, based on the results, control a fluidic device in the channel, such as a gate, to retain objects, such as for concentration and more detailed analysis by other sensing components, or to purge objects from the channel.
    • 流体结构包括通道,并且沿着通道是一系列感测部件,以获得关于在通道内行进的物体的信息,例如由流体携带的液滴或其它物体。 至少一个感测组件包括一组光电传感器阵列的单元。 该组细胞照射从物体发出的一系列光子能量,并且包括在子范围内的光密度的子集。 处理器可以从感测组件接收关于对象的信息,并使用它来获得光谱信息。 处理器可以使用来自一组感测组件的信息来执行初始分析,并且基于该结果,控制通道(例如门)中的流体装置以保持对象,例如通过其他感测的浓度和更详细的分析 组件,或从通道清除对象。
    • 85. 发明申请
    • Particle separation and concentration system
    • 颗粒分离和浓缩系统
    • US20080128331A1
    • 2008-06-05
    • US11606460
    • 2006-11-30
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • Meng H. LeanJeonggi SeoAshutosh KoleNorine E. ChangScott Jong Ho Limb
    • B03B5/00
    • B01D21/265B01D2221/10B01D2311/04B01D2311/16B01D2321/2025B03B5/32B04C1/00G01N15/0255G01N15/04B01D2311/2676
    • This invention is based on size and mass separation of suspended particles, including biological matter, which are made to flow in a spiral channel. On the spiral sections, the inward directed transverse pressure field from fluid shear competes with the outward directed centrifugal force to allow for separation of particles. At high velocity, centrifugal force dominates and particles move outward. At low velocities, transverse pressure dominates and the particles move inward. The magnitudes of the two opposing forces depend on flow velocity, particle size, radius of curvature of the spiral section, channel dimensions, and viscosity of the fluid. At the end of the spiral channel, a parallel array of outlets collects separated particles. For any particle size, the required channel dimension is determined by estimating the transit time to reach the side-wall. This time is a function of flow velocity, channel width, viscosity, and radius of curvature. Larger particles may reach the channel wall earlier than the smaller particles which need more time to reach the side wall. Thus a spiral channel may be envisioned by placing multiple outlets along the channel. This technique is inherently scalable over a large size range from sub-millimeter down to 1 μm.
    • 本发明基于使得在螺旋通道中流动的悬浮颗粒(包括生物物质)的尺寸和质量分离。 在螺旋段上,来自流体剪切的向内定向的横向压力场与向外的定向离心力相竞争,以允许颗粒分离。 在高速度下,离心力主导,颗粒向外移动。 在低速度下,横向压力占主导,颗粒向内移动。 两个相对力的大小取决于流速,粒径,螺旋截面的曲率半径,通道尺寸和流体的粘度。 在螺旋通道的末端,平行排列的出口收集分离的颗粒。 对于任何颗粒尺寸,所需的通道尺寸通过估计到达侧壁的通行时间来确定。 这个时间是流速,通道宽度,粘度和曲率半径的函数。 较大的颗粒可能比需要更多时间到达侧壁的较小颗粒更早地到达通道壁。 因此,可以通过沿着通道设置多个出口来设想螺旋通道。 这种技术在从亚毫米下降到1毫米的大尺寸范围内固有地可扩展。