会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明申请
    • ELECTRONIC LEARNING SYNAPSE WITH SPIKE-TIMING DEPENDENT PLASTICITY USING UNIPOLAR MEMORY-SWITCHING ELEMENTS
    • 使用单核存储器切换元件的具有SPIKE时序依赖性塑性的电子学习算法
    • US20100299296A1
    • 2010-11-25
    • US12470403
    • 2009-05-21
    • Dharmendra S. ModhaRohit S. Shenoy
    • Dharmendra S. ModhaRohit S. Shenoy
    • G06N3/08G06N3/04G06N3/063
    • G06N3/049G06N3/0635
    • According to embodiments of the invention, a system, method and computer program product producing spike-dependent plasticity in an artificial synapse. In an embodiment, a method includes: receiving a pre-synaptic spike in an electronic component; receiving a post-synaptic spike in the electronic component; in response to the pre-synaptic spike, generating a pre-synaptic pulse that occurs a predetermined period of time after the received pre-synaptic spike; in response to the post-synaptic spike, generating a post-synaptic pulse that starts at a baseline value and reaches a first voltage value a first period of time after the post-synaptic spike, followed by a second voltage value a second period of time after the post synaptic spike, followed by a return to the baseline voltage a third period of time after the post-synaptic spike; applying the generated pre-synaptic pulse to a pre-synaptic node of a synaptic device that includes a uni-polar, two-terminal bi-stable device in series with a rectifying element; and applying the generated post-synaptic pulse to a post-synaptic node of the synaptic device, wherein the synaptic device changes from a first conductive state to a second conductive state based on the value of input voltage applied to its pre and post-synaptic nodes, wherein the resultant state of the conductance of the synaptic device after the pre- and post-synaptic pulses are applied thereto depends on the relative timing of the received pre-synaptic spike with respect to the post synaptic spike.
    • 根据本发明的实施例,在人造突触中产生尖峰依赖可塑性的系统,方法和计算机程序产品。 在一个实施例中,一种方法包括:在电子部件中接收突触前突起; 接收电子元件中的突触后尖峰; 响应于突触前尖峰,产生在接收到的突触前尖峰之后发生预定时间段的突触前脉冲; 响应于突触后尖峰,产生在基线值开始并在突触后尖峰之后的第一时间段达到第一电压值的后突触后脉冲,随后是第二时间段的第二电压值 后突触尖峰后,再次回到基线电压第三个时间段后突触后尖峰; 将产生的突触前脉冲应用于包括与整流元件串联的单极性双端双稳态器件的突触器件的突触前节点; 以及将所产生的突触后脉冲应用于所述突触装置的突触后结点,其中所述突触装置基于施加到其前和后突触节点的输入电压的值从第一导通状态改变到第二导通状态 其中将突触前装置和突触后脉冲之后的突触装置的电导的结果状态施加到其上取决于所接收的突触前尖峰相对于突触后尖峰的相对时间。
    • 72. 发明申请
    • DEVICE AND METHOD RESPONSIVE TO INFLUENCES OF MIND
    • 对MIND影响的设备和方法
    • US20100057653A1
    • 2010-03-04
    • US12312570
    • 2007-11-19
    • Scott A. Wilber
    • Scott A. Wilber
    • G06N3/063G06F7/58G06N3/02
    • G06F7/588G06F7/58G06N3/0635
    • V An anomalous effect detector (100, 130, 300, 800, 830, 840, 900, 930) responsive to an influence of mind comprises a source of non-deterministic random numbers, SNDRN, (104, 134, 310), a phase-sensitive filter (108, 140, 170, 320), and a results interface (110, 160, 340). In some embodiments, the phase-sensitive filter comprises a complex filter (170). An artificial sensory neuron (802, 810, 820, 906) comprises a SNDRN. Preferably, several artificial sensory neurons (802, 906) are grouped in a small volume. An analog artificial sensory detector (800) comprises a plurality of analog artificial sensory neurons (802), an abstracting processor (804) and a control or feedback unit (806). Some embodiments include an artificial neural network (850). An artificial consciousness network (900) contains a plurality of artificial neural networks (902, 914). One of the artificial neural networks (914) comprises an activation pattern meta-analyzer. An artificial consciousness device comprises a cluster (936) of artificial consciousness networks, a sensory input device (932) to provide sensory input signals (933) to the input of one or more ANNs in ACD (930), and an output device (938).
    • V响应于心灵影响的异常效应检测器(100,130,300,800,830,408,900,930)包括非确定性随机数的源SNDRN(104,134,310),相位 敏感过滤器(108,140,​​170,320)和结果界面(110,160,340)。 在一些实施例中,相敏滤波器包括复数滤波器(170)。 人造感觉神经元(802,810,820,906)包括SNDRN。 优选地,将几个人造感觉神经元(802,906)分组成小体积。 模拟人造感觉检测器(800)包括多个模拟人造感觉神经元(802),抽象处理器(804)和控制或反馈单元(806)。 一些实施例包括人造神经网络(850)。 人工意识网络(900)包含多个人造神经网络(902,914)。 人造神经网络之一(914)包括激活模式元分析器。 人造意识装置包括人造意识网络的群集(936),向ACD(930)中的一个或多个ANN的输入提供感觉输入信号(933)的感觉输入设备(932)和输出设备(938) )。
    • 74. 发明申请
    • SOLVING THE DISTAL REWARD PROBLEM THROUGH LINKAGE OF STDP AND DOPAMINE SIGNALING
    • 通过STDP和DOPAMINE信号的链接解决远程问题
    • US20080162391A1
    • 2008-07-03
    • US11963403
    • 2007-12-21
    • Eugene M. Izhikevich
    • Eugene M. Izhikevich
    • G06N3/08
    • G06N3/049G06N3/02G06N3/063G06N3/0635G06N99/005
    • In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
    • 在巴甫洛夫和工具条件下,奖励通常会在奖励触发动作之后几秒钟,创造一个被称为远程奖励问题或信用分配问题的解释性难题。 如果(1)当奖励到达时,射击模式不再在那里,(2)大多数神经元和突触在等待期间是活跃的,大脑如何知道什么是神经元对于奖励的触发模式? 披露了由多巴胺(DA)调制的具有刺激时间依赖性可塑性(STDP)的皮层加标神经元的模型网络和计算机模拟来回答这个问题。 STDP在几毫秒的时间尺度上由突触前神经元和突触后神经元的几乎一致的发射模式触发,随后突触可塑性的缓慢动力学对于在数秒后的几秒的关键时期内对细胞外多巴胺DA浓度的变化敏感 几乎一致的射击模式。 导致奖励的等待期间的随机神经元激发不会影响STDP,因此使神经网络对这种持续的随机射击活动不敏感。 精确射击模式在脑动力学中的重要性以及以细胞外多巴胺DA的形式使用全局扩散加强信号的选择可以选择性地在正确的时间影响右侧突触。