会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 76. 发明申请
    • Low noise and high performance LSI device, layout and manufacturing method
    • 低噪声,高性能的LSI器件,布局和制造方法
    • US20050218455A1
    • 2005-10-06
    • US11067836
    • 2005-02-28
    • Shigenobu MaedaJeong Hwan Yang
    • Shigenobu MaedaJeong Hwan Yang
    • H01L21/00H01L21/8238H01L27/092
    • H01L29/7842H01L21/823807H01L21/823828H01L27/0922H01L29/66636H01L29/7843H01L29/7848
    • In semiconductor devices in which both NMOS devices and PMOS devices are used to perform in different modes such as analog and digital modes, stress engineering is selectively applied to particular devices depending on their required operational modes. That is, the appropriate mechanical stress, i.e., tensile or compressive, can be applied to and/or removed from devices, i.e., NMOS and/or PMOS devices, based not only on their conductivity type, i.e., n-type or p-type, but also on their intended operational application, for example, analog/digital, low-voltage/high-voltage, high-speed/low-speed, noise-sensitive/noise-insensitive, etc. The result is that performance of individual devices is optimized based on the mode in which they operate. For example, mechanical stress can be applied to devices that operate in high-speed digital settings, while devices that operate in analog or RF signal settings, in which electrical noise such as flicker noise that may be introduced by applied stress may degrade performance, have no stress applied.
    • 在其中使用NMOS器件和PMOS器件的半导体器件中,以不同的模式(例如模拟和数字模式)来执行应力工程,根据所需的操作模式,对特定器件有选择地施加应力工程。 也就是说,适当的机械应力,即拉伸或压缩,可以施加到和/或从设备(即,NMOS和/或PMOS器件)中去除和/或从器件去除,不仅基于它们的导电类型,即n型或p- 类型,而且还在于其预期的操作应用,例如模拟/数字,低电压/高电压,高速/低速,噪声敏感/噪声不敏感等。结果是个体的性能 设备根据其运行模式进行优化。 例如,机械应力可以应用于在高速数字设置中工作的设备,而在模拟或RF信号设置中工作的设备,其中可能由施加的应力引入的诸如闪烁噪声的电噪声可能降低性能,具有 没有施加应力。
    • 78. 发明授权
    • Semiconductor device having SOI structure and method of fabricating the same
    • 具有SOI结构的半导体器件及其制造方法
    • US06509211B2
    • 2003-01-21
    • US09790699
    • 2001-02-23
    • Yasuo YamaguchiShigenobu MaedaIijong Kim
    • Yasuo YamaguchiShigenobu MaedaIijong Kim
    • H01L21339
    • H01L29/78696H01L21/26506H01L21/26586H01L27/12H01L29/66772H01L29/78609H01L29/78618H01L29/78621
    • A semiconductor device having an SOI structure capable of effectively preventing diffusion of an impurity from a source/drain region on an endmost portion of a silicon layer under a gate electrode is disclosed. In this semiconductor device, nitrogen is introduced into at least either a source/drain region or an end portion of a semiconductor layer located under a gate electrode, and the concentration profile of the nitrogen has a first concentration peak at least in either one of an endmost portion of the source/drain region in the direction where the gate electrode extends and an endmost portion of the semiconductor layer located under the gate electrode. Due to this concentration profile of nitrogen, point defects or the like serving as mediation for diffusion of an impurity are trapped, whereby diffusion of the impurity from the source/drain region is inhibited as a result. Thus, generation of an abnormal leakage current or the like is prevented.
    • 公开了一种具有SOI结构的半导体器件,该SOI结构能够有效地防止杂质从源极/漏极区域扩散到栅电极下方的硅层的最末端部分。 在该半导体器件中,将氮气引入位于栅电极下方的半导体层的源极/漏极区域或端部的至少一个中,并且氮的浓度分布至少具有第一浓度峰值 源极/漏极区域在栅电极延伸的方向的最末端部分和位于栅电极下方的半导体层的最末端部分。 由于氮的浓度分布,作为用于杂质扩散的介质的点缺陷等被捕获,结果导致杂质从源/漏区的扩散受到抑制。 因此,防止产生异常的漏电流等。
    • 80. 发明授权
    • Semiconductor device and method of manufacturing the same
    • 半导体装置及其制造方法
    • US06358815B2
    • 2002-03-19
    • US09886031
    • 2001-06-22
    • Shigenobu Maeda
    • Shigenobu Maeda
    • H01L2176
    • H01L29/66772H01L21/306H01L21/7624H01L21/76264H01L21/76283H01L29/1079H01L29/78603Y10S438/96
    • A semiconductor device comprises a silicon region (1) of the first conductivity type, a porous silicon layer (2) formed inside the silicon region (1) as a buried layer and a source region (3a) and a drain region (4a) of the second conductivity type different from the first conductivity type selectively formed in an upper surface of the silicon region (1). Bottom surfaces of the source region (3a) and the drain region (4a) are located adjacently above an upper surface of the porous silicon layer (2). As a result, depletion layers (8) in pn junctions between the silicon region (1) and the bottom surfaces of the source region (3a) and the drain region (4a) reach the inside of the porous silicon layer (2). With this structure, a semiconductor device which achieves a faster operation and lower power consumption while ensuring stability in operation of a MOSFET and a method of manufacturing the same are provided.
    • 半导体器件包括第一导电类型的硅区域(1),形成在作为掩埋层的硅区域(1)内的多孔硅层(2)和源极区域(3a)和漏极区域(4a) 不同于在硅区域(1)的上表面中选择性地形成的第一导电类型的第二导电类型。 源极区域(3a)和漏极区域(4a)的底表面邻近位于多孔硅层(2)的上表面上方。 结果,硅区域(1)和源极区域(3a)和漏极区域(4a)的底表面之间的pn结中的耗尽层(8)到达多孔硅层(2)的内部。 利用这种结构,提供了一种在确保MOSFET的操作中的稳定性的同时实现更快的操作和更低功耗的半导体器件及其制造方法。