会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Strained-silicon channel CMOS with sacrificial shallow trench isolation oxide liner
    • 应变硅沟道CMOS与牺牲浅沟槽隔离氧化物衬垫
    • US06825086B2
    • 2004-11-30
    • US10345728
    • 2003-01-17
    • Jong-Jan LeeSheng Teng Hsu
    • Jong-Jan LeeSheng Teng Hsu
    • H01L21336
    • H01L21/823878H01L21/76224H01L21/823807
    • A strained-silicon (Si) channel CMOS device shallow trench isolation (STI) oxide region, and method for forming same have been provided. The method comprises: forming a Si substrate; forming a relaxed-SiGe layer overlying the Si substrate, or a SiGe on insulator (SGOI) substrate with a buried oxide (BOX) layer; forming a strained-Si layer overlying the relaxed-SiGe layer; forming a silicon oxide layer overlying the strained-Si layer; forming a silicon nitride layer overlying the silicon oxide layer; etching the silicon nitride layer, the silicon oxide layer, the strained-Si layer, and the relaxed-SiGe layer, forming a STI trench with trench corners and a trench surface; forming a sacrificial oxide liner on the STI trench surface; in response to forming the sacrificial oxide liner, rounding and reducing stress at the STI trench corners; removing the sacrificial oxide liner; and, filling the STI trench with silicon oxide.
    • 已经提供了应变硅(Si)沟道CMOS器件浅沟槽隔离(STI)氧化物区域及其形成方法。 该方法包括:形成Si衬底; 形成覆盖在Si衬底上的弛豫SiGe层或者具有掩埋氧化物(BOX)层的绝缘体上硅锗(SGOI)衬底; 形成覆盖弛豫SiGe层的应变Si层; 形成覆盖在应变Si层上的氧化硅层; 形成覆盖所述氧化硅层的氮化硅层; 蚀刻氮化硅层,氧化硅层,应变Si层和弛豫SiGe层,形成具有沟槽角和沟槽表面的STI沟槽; 在STI沟槽表面上形成牺牲氧化物衬垫; 响应于形成牺牲氧化物衬垫,在STI沟槽角处减少应力; 去除牺牲氧化物衬垫; 并用氧化硅填充STI沟槽。
    • 73. 发明授权
    • Chemical vapor deposition of PB5GE3O11 thin film for ferroelectric applications
    • 用于铁电应用的PB5GE3O11薄膜的化学气相沉积
    • US06242771B1
    • 2001-06-05
    • US09291688
    • 1999-04-13
    • Sheng Teng HsuChien Hsiung PengJong Jan Lee
    • Sheng Teng HsuChien Hsiung PengJong Jan Lee
    • H01L29788
    • H01L28/55C23C16/40H01L21/31604H01L21/31691H01L29/516H01L29/78391
    • A method of forming a semiconductor structure having a ferroelectric memory (FEM) gate unit on a substrate of single crystal silicon includes: forming a silicon device area for the FEM gate unit; treating the device area to form area for a source, gate and drain region; depositing an FEM gate unit over the gate junction region, including depositing a lower electrode, depositing a c-axis oriented Pb5Ge3O11 FE layer by Chemical vapor deposition (CVD), and depositing an upper electrode; and depositing an insulating structure about the FEM gate unit. A ferroelectric memory (FEM) cell includes: a single-crystal silicon substrate including an active region having source, gate and drain regions therein; a FEM gate unit including a lower electrode, a c-axis oriented Pb5Ge3O11 FE layer formed by CVD and an upper electrode; an insulating layer, having an upper surface, overlying the junction regions, the FEM gate unit and the substrate; and a source, gate and drain electrode.
    • 在单晶硅的衬底上形成具有铁电存储(FEM)栅极单元的半导体结构的方法包括:形成用于FEM门单元的硅器件区域; 处理器件区域以形成源极,栅极和漏极区域; 在所述栅极结区域上沉积FEM栅极单元,包括沉积下电极,通过化学气相沉积(CVD)沉积c轴取向的Pb5Ge3O11FE层,以及沉积上电极; 以及围绕所述FEM门单元沉积绝缘结构。 铁电存储器(FEM)单元包括:单晶硅衬底,其包括其中具有源极,栅极和漏极区域的有源区; 包括下电极,由CVD形成的c轴取向Pb5Ge3O11FE层和上电极的有限元门单元; 绝缘层,具有覆盖接合区域的上表面,FEM门单元和衬底; 以及源极,栅极和漏极。
    • 74. 发明授权
    • Method of making a single transistor ferroelectric memory cell with
asymmetrical ferroelectric polarization
    • 制造具有不对称铁电极化的单晶体管铁电存储单元的方法
    • US6117691A
    • 2000-09-12
    • US287726
    • 1999-04-07
    • Sheng Teng HsuJong Jan Lee
    • Sheng Teng HsuJong Jan Lee
    • G11C11/22H01L21/28H01L21/8246H01L21/84H01L27/115H01L29/78H01G7/06
    • H01L21/84G11C11/22H01L21/28291H01L27/11502H01L27/11585H01L27/1159H01L29/78391G11C11/223
    • A method of forming a semiconductor structure having a ferroelectric memory (FEM) gate unit on a silicon substrate includes implanting doping impurities of a first type into the substrate to form a conductive channel of a first type, implanting doping impurities of a second type in the conductive channel of the first type to form a conductive channel well of a second type, implanting doping impurities of the first type in the conductive channel well of the second type to form a conductive channel of the first conductivity type for use as a gate junction region, implanting doping impurities of the second type in the conductive channel sub-well of the third type on either side of the gate junction region to form plural conductive channels of the second conductivity type for use as a source junction region and a drain junction region; and depositing an FEM gate unit over the gate junction region.A ferroelectric memory cell includes a silicon substrate of a first conductive type, a well structure of a second conductive type formed in the substrate, a structure of the first conductive type formed in the second conductivity type well structure, for use as a gate junction region. A source junction region and a drain junction region are located in the sub-well on either side of the gate junction region, doped to form conductive channels of second conductive type. A FEM gate unit overlays the conductive channel of the gate junction region. An insulating layer overlays the junction regions, the FEM gate unit and the substrate. Suitable electrodes are connected to the various active regions in the memory cell.
    • 在硅衬底上形成具有铁电存储(FEM)栅极单元的半导体结构的方法包括将第一类型的掺杂杂质注入到衬底中以形成第一类型的导电沟道,将第二类型的掺杂杂质注入到 所述第一类型的导电通道形成第二类型的导电通道阱,在所述第二类型的导电通道阱中注入所述第一类型的掺杂杂质,以形成用作栅极结区域的第一导电类型的导电沟道 在栅极结区域的任一侧将第二类型的导电沟道子阱中的第二类型的掺杂杂质注入,以形成用作源极结区域和漏极结区域的第二导电类型的多个导电沟道; 以及在栅极结区域上沉积FEM栅极单元。 铁电存储单元包括第一导电类型的硅衬底,形成在衬底中的第二导电类型的阱结构,形成在第二导电类型阱结构中的第一导电类型的结构,用作栅极结区域 。 源极结区域和漏极结区域位于栅极结区域的任一侧的子阱中,被掺杂形成第二导电类型的导电沟道。 有限元栅极单元覆盖栅极结区域的导电沟道。 绝缘层覆盖了连接区域,FEM栅极单元和衬底。 合适的电极连接到存储单元中的各种有源区。
    • 75. 发明授权
    • Method of making ferroelectric memory cell for VLSI RAM array
    • 制造VLSI RAM阵列的铁电存储单元的方法
    • US6048738A
    • 2000-04-11
    • US870375
    • 1997-06-06
    • Sheng Teng HsuJong Jan Lee
    • Sheng Teng HsuJong Jan Lee
    • G11C11/22H01L21/28H01L21/8246H01L21/84H01L27/115H01L29/78H01G7/06
    • H01L27/11502G11C11/22H01L21/28291H01L21/84H01L27/11585H01L27/1159H01L29/78391G11C11/223
    • A method of forming a semiconductor memory device on a silicon substrate includes implanting doping impurities of a first type in the silicon substrate to form a conductive channel of a first type for use as a gate junction region, forming a MOS capacitor on the conductive channel of the first type, depositing an FEM capacitor over the MOS capacitor, thereby forming a stacked gate unit, implanting doping impurities of a second type in the silicon substrate on either side of the gate junction region to form a conductive channel of a second type for use as a source junction region and a drain junction region, and depositing an insulating structure about the FEM gate unit. A ferroelectric memory (FEM) cell constructed according to the invention includes a silicon substrate, a gate region located in said substrate, a source junction region and a drain junction region located on either side of said gate region, a MOS capacitor, a FEM capacitor, wherein said FEM capacitor is stacked on and overlays at least a portion of said MOS capacitor, thereby forming, with said MOS capacitor, a stacked gate unit.
    • 在硅衬底上形成半导体存储器件的方法包括在硅衬底中注入第一类型的掺杂杂质以形成用作栅极结区域的第一类型的导电沟道,在导电沟道上形成MOS电容器 第一类型,在MOS电容器上沉积FEM电容器,从而形成堆叠栅极单元,在栅极结区域的任一侧上在硅衬底中注入第二类型的掺杂杂质以形成第二类型的导电沟道用于 作为源极结区域和漏极结区域,以及围绕FEM栅极单元沉积绝缘结构。 根据本发明构造的铁电存储器(FEM)单元包括硅衬底,位于所述衬底中的栅极区,位于所述栅极区两侧的源极结区域和漏极结区域,MOS电容器,FEM电容器 ,其中所述FEM电容器堆叠在所述MOS电容器的至少一部分上并覆盖所述MOS电容器,从而与所述MOS电容器形成堆叠栅极单元。
    • 76. 发明授权
    • Method for fabricating an asymmetric channel doped MOS structure
    • 制造不对称沟道掺杂MOS结构的方法
    • US5891782A
    • 1999-04-06
    • US918678
    • 1997-08-21
    • Sheng Teng HsuJong Jan Lee
    • Sheng Teng HsuJong Jan Lee
    • H01L29/78H01L21/336H01L29/786H01L21/8234
    • H01L29/78624H01L29/66772H01L29/78696
    • A method of forming a MOS transistor without a lightly doped drain (LDD) region between the channel region and drain is provided. The channel region is formed from a tilted ion implantation after the deposition of the gate oxide layer. The tilted implantation forms a relatively short channel length, with respect to the length of the gate electrode. The position of the channel is offset, and directly adjoins the source. The non-channel area under the gate, adjacent the drain, replaces the LDD region between the channel and the drain. This drain extension acts to more evenly distribute electric fields so that large breakdown voltages are possible. The small channel length, and eliminated LDD region adjacent the source, act to reduce resistance between the source and drain. In this manner, larger I.sub.d currents and faster switching speeds are obtained. A MOS transistor having a short, offset channel and drain extension is also provided.
    • 提供了一种形成在沟道区和漏极之间没有轻掺杂漏极(LDD)区的MOS晶体管的方法。 沟道区域是在淀积栅极氧化物层之后由倾斜的离子注入形成的。 相对于栅电极的长度,倾斜注入形成相对短的沟道长度。 通道的位置偏移,并直接与源相邻。 在漏极附近的栅极下方的非沟道区域替代通道和漏极之间的LDD区域。 这种漏极扩展用于更均匀地分布电场,使得可以实现大的击穿电压。 较小的通道长度和消除与源极相邻的LDD区域起到降低源极和漏极之间的电阻的作用。 以这种方式,获得更大的Id电流和更快的开关速度。 还提供了具有短的偏置沟道和漏极延伸的MOS晶体管。
    • 77. 发明授权
    • Supercapacitor with hexacyanometallate cathode, activated carbon anode, and non-aqueous electrolyte
    • 具有六金属金属阴极,活性炭阳极和非水电解质的超级电容器
    • US09159502B2
    • 2015-10-13
    • US13603322
    • 2012-09-04
    • Yuhao LuSean Andrew VailHidayat KisdarjonoJong-Jan Lee
    • Yuhao LuSean Andrew VailHidayat KisdarjonoJong-Jan Lee
    • H01M2/16H01G11/30
    • H01G11/30Y02E60/13Y10T29/417
    • A supercapacitor is provided with a method for fabricating the supercapacitor. The method provides dried hexacyanometallate particles having a chemical formula AmM1xM2y(CN)6.pH2O with a Prussian Blue hexacyanometallate, crystal structure, where A is an alkali or alkaline-earth cation, and M1 and M2 are metals with 2+ or 3+ valance positions. The variable m is in the range of 0.5 to 2, x is in the range of 0.5 to 1.5, y is in the range of 0.5 to 1.5, and p is in the range of 0 to 6. The hexacyanometallate particles are mixed with a binder and electronic conductor powder, to form a cathode comprising AmM1xM2y(CN)6.pH2O. The method also forms an activated carbon anode and a membrane separating the cathode from the anode, permeable to A and A′ cations. Finally, an electrolyte is added with a metal salt including A′ cations. The electrolyte may be aqueous.
    • 超级电容器具有制造超级电容器的方法。 该方法提供具有化学式AmM1xM2y(CN)6.pH2O的干燥的六氰基金属盐颗粒与普鲁士蓝六氰基金属酸盐晶体结构,其中A是碱金属或碱土金属阳离子,M1和M2是具有2+或3+价态的金属 职位 变量m在0.5至2的范围内,x在0.5至1.5的范围内,y在0.5至1.5的范围内,p在0至6的范围内。六氰基金属盐颗粒与 粘合剂和电子导体粉末,以形成包含AmM1xM2y(CN )6pH2O的阴极。 该方法还形成活性炭阳极和将阴极与阳极分开的膜,其可透过A和A'阳离子。 最后,向电解质中加入包含A'阳离子的金属盐。 电解质可以是水性的。
    • 79. 发明授权
    • Solution-processed metal-selenide semiconductor using selenium nanoparticles
    • 使用硒纳米粒子的溶液处理的金属硒化物半导体
    • US08809113B2
    • 2014-08-19
    • US13674005
    • 2012-11-10
    • Sean Andrew VailAlexey KoposovJong-Jan Lee
    • Sean Andrew VailAlexey KoposovJong-Jan Lee
    • H01L31/032C09D11/00B82Y30/00B82Y40/00
    • H01L31/0326B82Y30/00B82Y40/00C09D11/00C09D11/005C09D11/54H01L21/02425H01L21/02568H01L21/02601H01L21/02614H01L21/02628H01L31/0322Y02E10/541
    • A method is provided for forming a solution-processed metal and mixed-metal selenide semiconductor using selenium (Se) nanoparticles (NPs). The method forms a first solution including SeNPs dispersed in a solvent. Added to the first solution is a second solution including a first material set of metal salts, metal complexes, or combinations thereof, which are dissolved in a solvent, forming a third solution. The third solution is deposited on a conductive substrate, forming a first intermediate film comprising metal precursors, from corresponding members of the first material set, and embedded SeNPs. As a result of thermally annealing, the metal precursors are transformed and the first intermediate film is selenized, forming a first metal selenide-containing semiconductor. In one aspect, the first solution further comprises ligands for the stabilization of SeNPs, which are liberated during thermal annealing. In another aspect, the metal selenide-containing semiconductor comprises copper, indium, gallium diselenide (CIGS).
    • 提供了使用硒(Se)纳米颗粒(NP)形成溶液处理金属和混合金属硒化物半导体的方法。 该方法形成包含分散在溶剂中的SeNP的第一溶液。 添加到第一溶液中是第二溶液,其包括溶解在溶剂中的第一组金属盐,金属络合物或其组合,形成第三溶液。 第三溶液沉积在导电基底上,形成包含金属前体的第一中间膜,来自第一材料组的相应构件和嵌入的SeNP。 作为热退火的结果,金属前体被转化并且第一中间膜被硒化,形成第一含金属硒化物的半导体。 在一个方面,第一溶液还包含用于稳定SeNP的配体,其在热退火期间释放。 另一方面,含金属硒化物的半导体包括铜,铟,二硒化镓(CIGS)。