会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明授权
    • Optical element mount and method thereof for a gun-launched projectile
    • 光学元件安装及其枪射弹的方法
    • US07547865B2
    • 2009-06-16
    • US11761155
    • 2007-06-11
    • Gary H. JohnsonDouglas M. BeardJohn A. ThomasRene D. Perez
    • Gary H. JohnsonDouglas M. BeardJohn A. ThomasRene D. Perez
    • F42B15/01F42B15/10F41G7/00F42B15/00
    • F42B30/006F41G7/2253F41G7/226F41G7/2293G02B7/00G02B7/007G02B7/02
    • An optical element mount is effective in high G environments to protect brittle optical elements in which tensile stresses are generated on surface S2 without degrading optical performance. A flexible spacer formed of a relatively low-stiffness material supports an optical element having a tapered outer periphery in an optical seat having a complementary tapered surface. When the optical assembly is exposed to the high G environment, the inertial loading drives the optical element in the aft direction into the flexible spacer and seat. This puts the optical element into a plate bending condition thereby inducing tensile stress on S2 which is at least partially offset by a compressive stress caused by the reaction force normal to the tapered interface. The stresses, both compressive and tensile, placed on the optical element in the high G environment can be very large. In the absence of the tapered mount and flexible spacer, the tensile stress placed on S2 would likely fracture or shatter the brittle optical element. When the inertial loading is removed, the optical element returns to its initial unstressed position.
    • 光学元件安装件在高G环境中是有效的,以保护脆性光学元件,其中在表面S2上产生拉伸应力而不降低光学性能。 由相对低刚度材料形成的柔性间隔件支撑在具有互补锥形表面的光学座中具有锥形外周的光学元件。 当光学组件暴露于高G环境时,惯性负载将光学元件向后驱动到柔性隔板和座椅中。 这使得光学元件进入板弯曲状态,从而引起S2上的拉伸应力,该拉伸应力至少部分地被由锥形界面的反作用力引起的压缩应力偏移。 放置在高G环境中的光学元件上的压缩和拉伸应力可能非常大。 在没有锥形安装件和柔性隔离件的情况下,放置在S2上的拉伸应力可能会破坏或破碎脆性光学元件。 当去除惯性负载时,光学元件返回到其初始无应力位置。
    • 63. 发明申请
    • OPTICAL ELEMENT MOUNT AND METHOD THEREOF FOR A GUN-LAUNCHED PROJECTILE
    • 光学元件安装及其方法
    • US20080302905A1
    • 2008-12-11
    • US11761155
    • 2007-06-11
    • Gary H. JohnsonDouglas M. BeardJohn A. ThomasRene D. Perez
    • Gary H. JohnsonDouglas M. BeardJohn A. ThomasRene D. Perez
    • F41G7/26F42B15/01
    • F42B30/006F41G7/2253F41G7/226F41G7/2293G02B7/00G02B7/007G02B7/02
    • An optical element mount is effective in high G environments to protect brittle optical elements in which tensile stresses are generated on surface S2 without degrading optical performance. A flexible spacer formed of a relatively low-stiffness material supports an optical element having a tapered outer periphery in an optical seat having a complementary tapered surface. When the optical assembly is exposed to the high G environment, the inertial loading drives the optical element in the aft direction into the flexible spacer and seat. This puts the optical element into a plate bending condition thereby inducing tensile stress on S2 which is at least partially offset by a compressive stress caused by the reaction force normal to the tapered interface. The stresses, both compressive and tensile, placed on the optical element in the high G environment can be very large. In the absence of the tapered mount and flexible spacer, the tensile stress placed on S2 would likely fracture or shatter the brittle optical element. When the inertial loading is removed, the optical element returns to its initial unstressed position.
    • 光学元件安装件在高G环境中是有效的,以保护脆性光学元件,其中在表面S2上产生拉伸应力而不降低光学性能。 由相对低刚度材料形成的柔性间隔件支撑在具有互补锥形表面的光学座中具有锥形外周的光学元件。 当光学组件暴露于高G环境时,惯性负载将光学元件向后驱动到柔性隔板和座椅中。 这使得光学元件进入板弯曲状态,从而引起S2上的拉伸应力,该拉伸应力至少部分地被由锥形界面的反作用力引起的压缩应力偏移。 放置在高G环境中的光学元件上的压缩和拉伸应力可能非常大。 在没有锥形安装件和柔性隔离件的情况下,放置在S2上的拉伸应力可能会破坏或破碎脆性光学元件。 当去除惯性负载时,光学元件返回到其初始无应力位置。
    • 64. 发明申请
    • Window
    • 窗口
    • US20040246551A1
    • 2004-12-09
    • US10203938
    • 2002-10-10
    • Herman Hubertus Jacobus Reijnen
    • G02B026/08
    • G02B7/007
    • A window comprises a holder (30) having an opening for receiving a layer (44) of diamond, sapphire or like material, the opening being defined by a surface (38) which slopes from one edge (40) to an opposite edge (42) and a layer (44) of diamond, sapphire or like material having an edge surface (50) complemental with the opening-defining surface (38) located in the opening such that the complemental surfaces (38, 50) complement each other and are bonded to each other. Generally, a bonding layer (52) is provided between the complemental surfaces (38, 50).
    • 窗口包括具有用于接收金刚石,蓝宝石或类似材料的层(44)的开口的保持器(30),该开口由从一个边缘(40)向相对边缘(42)倾斜的表面(38)限定 )和金刚石,蓝宝石或类似材料的层(44),其具有与位于开口中的开口限定表面(38)互补的边缘表面(50),使得互补表面(38,50)彼此互补,并且是 彼此粘合。 通常,在互补表面(38,50)之间设置结合层(52)。
    • 65. 发明授权
    • Optical segmented RF signature managed window
    • 光分段RF签名管理窗口
    • US06560050B2
    • 2003-05-06
    • US09878348
    • 2001-06-12
    • Carlos Anselmo CasteleiroDavid J. Falabella
    • Carlos Anselmo CasteleiroDavid J. Falabella
    • G02B2700
    • G01S7/4813F41H3/00F42B7/00G02B7/007H01Q1/40Y10T428/24917
    • A window has at least two surfaces oriented relative to each other at an angle greater than zero. A conductive path is disposed across the two surfaces and renders the window reflective or absorptive to a second predetermined bandwidth of energy, which can be radio frequency energy. The window utilizes window geometry, surface treatments, and bonding techniques to maintain electrical continuity across the surface. The window can be constructed from multiple segmented elements, such as sapphire, or from a unitary body. The window is transmissive to a desired wavelength of energy for the sensor while being reflective, refractive, or absorptive to a desired RF bandwidth of energy. The window provides RF signature management coupled with a substantial sensor Field of Regard and allows for full-time use of an embedded sensor.
    • 窗口具有至少两个以大于零的角度相对于彼此定向的表面。 导电路径横跨两个表面布置,并使得窗口反射或吸收第二预定带宽的能量,其可以是射频能量。 该窗口利用窗口几何形状,表面处理和粘合技术来保持整个表面的电连续性。 窗口可以由多个分段元素构成,如蓝宝石或单体。 窗口对于传感器的期望的能量波长是透射的,同时被反射,折射或吸收到期望的RF带宽的能量。 该窗口提供RF签名管理以及相当大的传感器领域,并允许全时使用嵌入式传感器。
    • 66. 发明申请
    • Infrared segmented RF signature managed window
    • 红外分段RF签名管理窗口
    • US20020186484A1
    • 2002-12-12
    • US09878348
    • 2001-06-12
    • Carlos Anselmo CasteleiroDavid J. Falabella
    • G02B001/00
    • G01S7/4813F41H3/00F42B7/00G02B7/007H01Q1/40Y10T428/24917
    • A window has at least two surfaces oriented relative to each other at an angle greater than zero. A conductive path is disposed across the two surfaces and renders the window reflective or absorptive to a second predetermined bandwidth of energy, which can be radio frequency energy. The window utilizes window geometry, surface treatments, and bonding techniques to maintain electrical continuity across the surface. The window can be constructed from multiple segmented elements, such as sapphire, or from a unitary body. The window is transmissive to a desired wavelength of energy for the sensor while being reflective, refractive, or absorptive to a desired RF bandwidth of energy. The window provides RF signature management coupled with a substantial sensor Field of Regard and allows for full-time use of an embedded sensor.
    • 窗口具有至少两个以大于零的角度相对于彼此定向的表面。 导电路径横跨两个表面布置,并使得窗口反射或吸收第二预定带宽的能量,其可以是射频能量。 该窗口利用窗口几何形状,表面处理和粘合技术来保持整个表面的电连续性。 窗口可以由多个分段元素构成,如蓝宝石或单体。 窗口对于传感器的期望的能量波长是透射的,同时被反射,折射或吸收到期望的RF带宽的能量。 该窗口提供RF签名管理以及相当大的传感器领域,并允许全时使用嵌入式传感器。
    • 69. 发明授权
    • Stress-free bonding of dissimilar materials
    • 不同材料的无应力接合
    • US5769986A
    • 1998-06-23
    • US696218
    • 1996-08-13
    • Fred B. HagedornWilliam F. Cashion
    • Fred B. HagedornWilliam F. Cashion
    • B29C65/00B32B7/02B32B37/14G02B1/02G02B7/00B32B18/00B32B31/04
    • B32B37/144B29C65/02B29C66/73111B29C66/91212B29C66/91411B29C66/9161B32B7/02G02B1/02G02B7/007G02B7/008B32B2309/02B32B2309/12B32B2551/00Y10T428/30Y10T428/31612Y10T428/31616
    • A process and apparatus for bonding together two layers of dissimilar material, yielding a composite structure which is substantially stress-free at a selectable reference temperature and reference isostatic pressure, which includes providing a first layer and a second layer; determining a critical line for the first layer and second layer in a pressure-temperature plane wherein a location of the critical line depends on the selectable reference temperature and reference isostatic pressure and depends on coefficients of thermal expansion and bulk moduli material constants of the first layer and the second layer, wherein the critical line sets forth a plurality of temperature-pressure pairs at which the composite structure will be substantially stress-free; controlling a temperature and an isostatic pressure during bonding such that the temperature and the isostatic pressure represent a point on the critical line; bonding the first layer and the second layer at the temperature and the isostatic pressure; and returning to the selectable reference temperature and reference isostatic pressure after bonding is completed by following a path in the pressure-temperature plane which avoids imposing disruptive stresses on the composite structure.
    • 一种用于将两层不同材料粘合在一起的方法和装置,产生在可选参考温度下基本无应力的复合结构和参考等静压力,其包括提供第一层和第二层; 确定在压力 - 温度平面中的第一层和第二层的临界线,其中临界线的位置取决于可选择的参考温度和参考等静压力并且取决于第一层的热膨胀系数和体积模量材料常数 和所述第二层,其中所述临界线列出了所述复合结构将基本上无应力的多个温度 - 压力对; 在接合期间控制温度和等静压,使得温度和等静压力表示临界线上的点; 在温度和等静压下粘合第一层和第二层; 并且通过遵循压力 - 温度平面中的路径来完成粘合之后返回到可选择的参考温度和参考等静压力,这避免了对复合结构施加破坏性应力。