会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明申请
    • Fully Digitally Controller for Cantilever-Based Instruments
    • 基于悬臂的仪器的全数字控制器
    • US20150113687A1
    • 2015-04-23
    • US14590150
    • 2015-01-06
    • OXFORD INSTRUMENTS PLCOXFORD INSTRUMENTS AFM INC.
    • Roger ProkschJason ClevelandDan BocekTodd DayMario VianiClint Callahan
    • G01Q10/00G01Q60/24
    • G01Q10/06B82Y35/00G01Q10/00G01Q30/04G01Q60/24
    • A controller for cantilever-based instruments, including atomic force microscopes, molecular force probe instruments, high-resolution profilometers and chemical or biological sensing probes. The controller samples the output of the photo-detector commonly used to detect cantilever deflection in these instruments with a very fast analog/digital converter (ADC). The resulting digitized representation of the output signal is then processed with field programmable gate arrays and digital signal processors without making use of analog electronics. Analog signal processing is inherently noisy while digital calculations are inherently “perfect” in that they do not add any random noise to the measured signal. Processing by field programmable gate arrays and digital signal processors maximizes the flexibility of the controller because it can be varied through programming means, without modification of the controller hardware.
    • 用于基于悬臂的仪器的控制器,包括原子力显微镜,分子力探针仪器,高分辨率轮廓仪和化学或生物传感探针。 控制器采用非常快速的模拟/数字转换器(ADC)对通常用于检测这些仪器中的悬臂偏转的光检测器的输出进行采样。 然后,利用现场可编程门阵列和数字信号处理器对输出信号产生的数字化表示进行处理,而不利用模拟电子装置。 模拟信号处理本质上是嘈杂的,而数字计算本质上是“完美的”,因为它们不会对测量的信号增加任何随机噪声。 通过现场可编程门阵列和数字信号处理器的处理可以最大限度地提高控制器的灵活性,因为它可以通过编程手段进行变化,而无需修改控制器硬件。
    • 65. 发明授权
    • Pump probe measuring device
    • 泵探头测量装置
    • US08982451B2
    • 2015-03-17
    • US14236771
    • 2012-07-31
    • Hidemi ShigekawaOsamu Takeuchi
    • Hidemi ShigekawaOsamu Takeuchi
    • G01N21/55G01N21/17B82Y35/00G01Q60/12
    • G01N21/55B82Y35/00G01N21/1717G01N21/636G01N2021/1719G01N2021/1725G01N2021/1789G01N2021/1791G01N2201/0697G01Q60/12H01J37/244H01J37/26H01J2237/24507H01J2237/24564H01J2237/2818
    • A pump probe measuring device (1) comprises: an ultrashort optical pulse laser generator (2) for generating a first ultrashort optical pulse train which is a pump light (3a), second and third ultrashort optical pulse trains (3b), (3c) which are probe lights; an optical shutter unit (6) to which the second and the third ultrashort pulse trains (3b), (3c) are introduced; and a detecting unit (20) including an irradiation optical system (8) for directing the pump light (3a), the first probe light (3b) and the second probe light (3c) to a sample (7), a sensor (11) for detecting a probe signal from the sample (7), and a phase-sensitive detecting means (12) connected to the sensor (11). An optical shutter control unit (10) periodically modulates the delay time of the first probe light (3b) and that of the second probe light (3c) with respect to the pump light (3a), and the modulated first and second probe lights (3a), (3b) illuminate the sample (7) alternately to detect the probe signals from the sample (7) by the phase-sensitive detecting means (12) in synchronization with the periodic modulation signal of the delay time.
    • 泵探头测量装置(1)包括:超短光脉冲激光发生器(2),用于产生作为泵浦光(3a)的第一超短脉冲串,第二和第三超短脉冲序列(3b),(3c) 探针灯; 引入第二和第三超短脉冲串(3b),(3c)的光学快门单元(6); 以及检测单元(20),包括用于将泵浦光(3a),第一探测光(3b)和第二探测光(3c)引导到样品(7)的照射光学系统(8),传感器(11) ),用于检测来自所述样品(7)的探针信号;以及相敏检测装置(12),连接到所述传感器(11)。 光学快门控制单元(10)相对于泵浦光(3a)周期性地调制第一探测光(3b)和第二探测光(3c)的延迟时间,以及调制的第一和第二探测光( 3a),(3b)交替地照射样品(7),以与延迟时间的周期性调制信号同步地由相敏检测装置(12)检测来自采样(7)的探测信号。
    • 66. 发明申请
    • Low Drift Scanning Probe Microscope
    • 低漂移扫描探针显微镜
    • US20150074859A1
    • 2015-03-12
    • US14520021
    • 2014-10-21
    • Bruker Nano, Inc.
    • Anthonius G. RuiterHenry Mittel
    • G01Q30/10
    • G01Q30/10B82Y35/00G01Q70/04
    • A scanning probe microscope, such as an atomic force microscope, and method including z-stage and a bridge structure. A scanner containing a probe is mounted to the z-stage, which is movable in the z-axis to raise and lower the probe. The method reduces thermal drift of the z-stage and the bridge using a combination of heating elements thermally coupled to the z-stage and the bridge, ambient temperature sensors, and a controller to actively control the heating elements to maintain the bridge and the z-stage at an elevated temperature. Ideally, the temperatures in the system are selected so as to reduce drift between the probe and the sample during AFM scanning, wherein the drift is preferably maintained at less than about 1 nm for an ambient temperature change of about 1° C.
    • 扫描探针显微镜,例如原子力显微镜,以及包括z级和桥结构的方法。 包含探头的扫描器安装在z阶段,z阶可在z轴上移动以升高和降低探针。 该方法通过热耦合到z级和桥接器,环境温度传感器和控制器的加热元件的组合来减少z级和桥的热漂移,以主动地控制加热元件以维持桥和z 在高温下。 理想地,选择系统中的温度,以便减少在AFM扫描期间探针和样品之间的漂移,其中漂移优​​选保持在小于约1nm,环境温度变化约为1℃。