会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 63. 发明授权
    • Method of forming trench transistor with insulative spacers
    • 用绝缘间隔物形成沟槽晶体管的方法
    • US6100146A
    • 2000-08-08
    • US739595
    • 1996-10-30
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/336H01L29/423H01L29/78
    • H01L29/7834H01L29/66621
    • An IGFET with a gate electrode and insulative spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, a gate insulator on the bottom surface, a gate electrode on the gate insulator, and insulative spacers between the gate electrode and the sidewalls. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, depositing a blanket layer of insulative spacer material over the substrate and applying an anisotropic etch to form the insulative spacers on the sidewalls, growing the gate insulator on a central portion of the bottom surface between the insulative spacers, depositing a gate electrode material on the gate insulator and the insulative spacers, polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate, and applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, thereby forming a source and drain with channel junctions substantially aligned with the gate electrode. Advantageously, the channel length is significantly smaller than the trench length.
    • 公开了一种具有栅电极和沟槽中的绝缘间隔物的IGFET。 IGFET包括具有相对侧壁的沟槽和半导体衬底中的底表面,底表面上的栅极绝缘体,栅极绝缘体上的栅极电极以及栅电极和侧壁之间的绝缘间隔物。 形成IGFET的方法包括将掺杂层注入到衬底中,通过掺杂层完全蚀刻并部分地穿过衬底以形成沟槽并将掺杂层分为源极和漏极区,将绝缘隔离材料的覆盖层沉积在 基板并施加各向异性蚀刻以在侧壁上形成绝缘间隔物,在绝缘隔离物之间的底表面的中心部分上生长栅极绝缘体,在栅极绝缘体上沉积栅电极材料和绝缘间隔物,抛光栅极 电极材料,使得栅电极基本上与衬底的顶表面对准,并施加高温退火以扩散底表面下面的源极和漏极区域,从而形成源极和漏极,其通道结基本上与 栅电极。 有利地,沟道长度明显小于沟槽长度。
    • 64. 发明授权
    • Ion implantation into a gate electrode layer using an implant profile
displacement layer
    • 使用植入物轮廓位移层将离子注入到栅极电极层中
    • US06080629A
    • 2000-06-27
    • US837579
    • 1997-04-21
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • Mark I. GardnerRobert DawsonH. Jim Fulford, Jr.Frederick N. HauseMark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/28H01L21/8238H01L21/336
    • H01L21/823842H01L21/28035
    • A method for implanting a dopant into a thin gate electrode layer includes forming a displacement layer on the gate electrode layer to form a combined displacement/gate electrode layer, and implanting the dopant into the combined layer. The implanted dopant profile may substantially reside entirely within the gate electrode layer, or may substantially reside partially within the gate electrode layer and partially within the displacement layer. If the displacement layer is ultimately removed, at least some portion of the implanted dopant remains within the gate electrode layer. The gate electrode layer may be implanted before or after patterning and etching the gate electrode layer to define gate electrodes. Moreover, two different selective implants may be used to define separate regions of differing dopant concentration, such as P-type polysilicon and N-type polysilicon regions. Each region may utilize separate displacement layer thicknesses, which allows dopants of different atomic mass to use similar implant energies. A higher implant energy may be used to dope a gate electrode layer which is much thinner than normal range statistics require, without implant penetration into underlying structures.
    • 将掺杂剂注入到薄栅电极层中的方法包括在栅电极层上形成位移层以形成组合位移/栅极电极层,并将掺杂剂注入到组合层中。 注入的掺杂剂分布基本上完全位于栅极电极层内,或者基本上部分地位于栅极电极层内部分地位于位移层内。 如果位移层最终被去除,则注入的掺杂剂的至少一部分保留在栅电极层内。 栅极电极层可以在图案化之前或之后被注入,并蚀刻栅电极层以限定栅电极。 此外,可以使用两种不同的选择性植入来限定不同掺杂剂浓度的分开的区域,例如P型多晶硅和N型多晶硅区域。 每个区域可以利用单独的位移层厚度,这允许不同原子质量的掺杂剂使用类似的注入能量。 可以使用较高的注入能量来掺杂比正常范围统计要求更薄的栅极电极层,而不会使植入物渗入下面的结构。
    • 68. 发明授权
    • Method of making enhancement-mode and depletion-mode IGFETs with
different gate thicknesses
    • 制造具有不同栅极厚度的增强型和耗尽型IGFET的方法
    • US5976938A
    • 1999-11-02
    • US844925
    • 1997-04-21
    • Mark I. GardnerFrederick N. Hause
    • Mark I. GardnerFrederick N. Hause
    • H01L21/8236
    • H01L21/8236
    • A method of making enhancement-mode and depletion-mode IGFETs with different gate thicknesses is disclosed. The method includes providing a semiconductor substrate with first and second device regions, forming a first gate with a first thickness over the first device region, forming a second gate with a second thickness over the second device region, wherein the second thickness is substantially greater than the first thickness, implanting a dopant into the substrate and into the first and second gates to implant source and drain regions in the first device region and source and drain regions in the second device region, and transferring the dopant through the first gate into a first channel region in the first device region beneath the first gate without transferring essentially any of the dopant through the second gate into a second channel region in the second device region beneath the second gate, thereby providing depletion-mode doping in the first channel region while retaining enhancement-mode doping in the second channel region. The dopant can be implanted through the first gate into the first channel region. Alternatively, the dopant can be implanted into the first gate but not the first channel region and then diffused from the first gate into the first channel region. Advantageously, by employing different gate thicknesses, a single implant step can be used to provide lightly doped source/drain regions for enhancement and depletion-mode IGFETs as well as depletion-mode doping for channel regions of depletion-mode IGFETs (with thin gates) while retaining enhancement-mode doping for channel regions of enhancement-mode IGFETs (with thick gates).
    • 公开了一种制造具有不同栅极厚度的增强型和耗尽型IGFET的方法。 该方法包括向半导体衬底提供第一和第二器件区域,在第一器件区域上形成具有第一厚度的第一栅极,在第二器件区域上形成具有第二厚度的第二栅极,其中第二厚度基本上大于 第一厚度,将掺杂剂注入到衬底中并进入第一和第二栅极,以在第一器件区域和第二器件区域中的源极和漏极区域中注入源极和漏极区域,并将掺杂剂通过第一栅极转移到第一 在第一栅极下方的第一器件区域中的沟道区域,而不将基本上任何掺杂剂通过第二栅极转移到第二栅极下面的第二器件区域中的第二沟道区域中,由此在第一沟道区域中提供耗尽模式掺杂,同时保留 在第二通道区域中的增强型掺杂。 掺杂剂可以通过第一栅极注入第一沟道区。 或者,可以将掺杂剂注入第一栅极而不是第一沟道区,然后从第一栅极扩散到第一沟道区。 有利地,通过采用不同的栅极厚度,可以使用单个注入步骤来提供用于增强和耗尽型IGFET的轻掺杂源极/漏极区域以及耗尽型IGFET(具有薄栅极)的沟道区域的耗尽模式掺杂, 同时保持增强型IGFET(具有厚栅极)的沟道区域的增强型掺杂。
    • 70. 发明授权
    • Vertical transistor interconnect structure and fabrication method thereof
    • 垂直晶体管互连结构及其制造方法
    • US5933717A
    • 1999-08-03
    • US811381
    • 1997-03-04
    • Frederick N. HauseMark I. Gardner
    • Frederick N. HauseMark I. Gardner
    • H01L21/768H01L21/8234H01L27/088H01L21/8238
    • H01L21/823487H01L21/768H01L27/088
    • It has been discovered that improvements in the compactness and performance of integrated circuit devices are gained through the fabrication of vertical transistors for which channel sizes are determined by the accuracy of etch techniques rather than the resolution of photolithographic techniques. Etching in the vertical dimension is precisely controlled to resolutions of about 0.1 .mu.m while advanced photolithographic techniques in a volume production environment achieve resolutions of 0.25 .mu.m. Interconnect structures for connecting to high density vertical transistors are formed by depositing metal into the trenches etched during fabrication of the vertical transistors. A method of fabricating an integrated circuit includes etching a trench with a sidewall in a substrate wafer and forming a vertical transistor on the sidewall. The vertical transistor has a drain, a channel and a source doped at a series of vertical depths in the substrate wafer. The transistor has a gate coupled to the sidewall adjacent to the drain, the channel, and the source. The method of fabricating an integrated circuit further includes forming an interconnect in the trench coupled to the vertical transistor. An integrated circuit includes a substrate wafer having a trench with a sidewall and a vertical transistor formed on the sidewall of the trench. The vertical transistor has a drain, a channel and a source doped at a series of vertical depths in the substrate wafer. The vertical transistor has a gate coupled to the sidewall adjacent to the drain, the channel, and the source. The integrated circuit further includes an interconnect in the trench coupled to the vertical transistor.
    • 已经发现,通过制造垂直晶体管来获得集成电路器件的紧凑性和性能的改进,其中沟道尺寸由蚀刻技术的精度而不是光刻技术的分辨率确定。 在垂直尺寸上的蚀刻被精确地控制在约0.1μm的分辨率上,而在批量生产环境中的先进的光刻技术实现了0.25μm的分辨率。 用于连接到高密度垂直晶体管的互连结构通过在垂直晶体管的制造过程中蚀刻的沟槽中沉积金属而形成。 制造集成电路的方法包括:在衬底晶片中蚀刻具有侧壁的沟槽,并在侧壁上形成垂直晶体管。 垂直晶体管具有在衬底晶片中的一系列垂直深度处掺杂的漏极,沟道和源极。 晶体管具有与漏极,沟道和源极相邻的侧壁耦合的栅极。 制造集成电路的方法还包括在与垂直晶体管耦合的沟槽中形成互连。 集成电路包括具有侧壁沟槽和形成在沟槽侧壁上的垂直晶体管的衬底晶片。 垂直晶体管具有在衬底晶片中的一系列垂直深度处掺杂的漏极,沟道和源极。 垂直晶体管具有与漏极,沟道和源极相邻的侧壁耦合的栅极。 该集成电路还包括在与该垂直晶体管耦合的沟槽中的互连。