会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • Method for making trench mosfet having implanted drain-drift region
    • 制造具有注入漏极漂移区域的沟槽MOSFET的方法
    • US06764906B2
    • 2004-07-20
    • US10317568
    • 2002-12-12
    • Mohamed N. Darwish
    • Mohamed N. Darwish
    • H02L21336
    • H01L29/7813H01L21/2253H01L29/0634H01L29/0847H01L29/0878H01L29/1095H01L29/7811H01L2924/0002H01L2924/00
    • A trench MOSFET is formed in a structure which includes a P-type epitaxial layer overlying an N+ substrate. A trench is formed in the epitaxial layer. A deep implanted N layer is formed below the trench at the interface between the substrate and the epitaxial layer, and N-type dopant is implant through the bottom of the trench to form an N region in the epitaxial layer below the trench but above and separated from the deep N layer. The structure is heated to cause the N layer to diffuse upward and the N region to diffuse downward. The diffusions merge to form a continuous N-type drain-drift region extending from the bottom of the trench to the substrate. Alternatively, the drain-drift region may be formed by implanting N-type dopant through the bottom of the trench at different energies, creating a stack of N-type regions that extend from the bottom of the trench to the substrate.
    • 在包括覆盖在N +衬底上的P型外延层的结构中形成沟槽MOSFET。 在外延层中形成沟槽。 在衬底和外延层之间的界面处在沟槽下方形成深深注入的N层,并且N型掺杂剂通过沟槽的底部注入,以在沟槽下方的外延层中形成N区,但在上方并分离 从深N层。 加热结构使N层向上扩散,N区向下扩散。 扩散合并形成从沟槽的底部延伸到衬底的连续的N型漏 - 漂移区。 或者,可以通过在不同能量下通过沟槽的底部注入N型掺杂剂形成漏极 - 漂移区域,从而形成从沟槽的底部延伸到衬底的N型区域堆叠。
    • 66. 发明授权
    • Process for manufacturing trench MIS device having implanted drain-drift region and thick bottom oxide
    • 用于制造具有注入漏极漂移区域和厚底部氧化物的沟槽MIS器件的工艺
    • US07435650B2
    • 2008-10-14
    • US10872931
    • 2004-06-21
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • Mohamed N. DarwishKyle W. TerrillJainhai Qi
    • H01L21/336
    • H01L29/7813H01L21/2253H01L21/28185H01L21/28194H01L21/28211H01L21/823487H01L29/0634H01L29/0847H01L29/086H01L29/0878H01L29/1095H01L29/42368
    • A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The N-epitaxial layer increases the breakdown voltage of the MIS device. In alternative embodiments, the thick bottom oxide layer can be omitted.
    • 沟槽MIS器件形成在覆盖在N外延层和N +衬底上的P外延层中。 在一个实施例中,器件包括在沟槽底部的厚氧化物层和从沟槽的底部延伸到N外延层的N型漏 - 漂移区。 厚的绝缘层减小了栅极和漏极之间的电容,从而提高了器件在高频下工作的能力。 优选地,漏极漂移区域至少部分地通过在沟槽的侧壁上制造间隔物并且在侧壁间隔物之间​​并通过沟槽的底部注入N型掺杂剂而形成。 厚的底部氧化物层形成在沟槽的底部,同时侧壁间隔物仍然在位。 漏极漂移区可以比在N外延层中形成的常规“漂移区”更重的掺杂。 因此,器件具有低导通电阻。 N外延层增加了MIS器件的击穿电压。 在替代实施例中,可以省略厚的底部氧化物层。
    • 67. 发明申请
    • Power MOSFET with recessed field plate
    • 功率MOSFET具有凹陷的场板
    • US20080073707A1
    • 2008-03-27
    • US11903972
    • 2007-09-25
    • Mohamed N. Darwish
    • Mohamed N. Darwish
    • H01L29/78H01L21/336
    • H01L29/7813H01L21/26586H01L29/0696H01L29/1095H01L29/407H01L29/41766H01L29/42368H01L29/66734H01L29/7808H01L29/7809
    • A trench MOSFET contains a recessed field plate (RFP) trench adjacent the gate trench. The RFP trench contains an RFP electrode insulated from the die by a dielectric layer along the walls of the RFP trench. The gate trench has a thick bottom oxide layer, and the gate and RFP trenches are preferably formed in the same processing step and are of substantially the same depth. When the MOSFET operates in the third quadrant (with the source/body-to-drain junction forward-biased), the combined effect of the RFP and gate electrodes significantly reduces in the minority carrier diffusion current and reverse-recovery charge. The RFP electrode also functions as a recessed field plates to reduce the electric field in the channel regions when the MOSFET source/body to-drain junction reverse-biased.
    • 沟槽MOSFET包含与栅极沟槽相邻的凹陷场板(RFP)沟槽。 RFP沟槽包含沿着RFP沟槽的壁通过电介质层与裸片绝缘的RFP电极。 栅极沟槽具有厚的底部氧化物层,并且栅极和RFP沟槽优选地在相同的处理步骤中形成并且具有基本上相同的深度。 当MOSFET在第三象限(源极/体对漏极结正向偏置)中工作时,RFP和栅电极的组合效应在少数载流子扩散电流和反向恢复电荷中显着降低。 当MOSFET源极/体对漏极结反向偏置时,RFP电极还用作凹陷场板,以减小沟道区域中的电场。
    • 70. 发明授权
    • Trench MOSFET having implanted drain-drift region
    • 具有注入漏极漂移区的沟槽MOSFET
    • US06600193B2
    • 2003-07-29
    • US10211438
    • 2002-08-02
    • Mohamed N. Darwish
    • Mohamed N. Darwish
    • H01L2976
    • H01L29/7813H01L21/2253H01L29/0634H01L29/0847H01L29/0878H01L29/1095H01L29/7811
    • A trench MOSFET is formed in a structure which includes a P-type epitaxial layer overlying an N+ substrate. An N-type dopant is implanted through the bottom of the trench into the P-epitaxial layer to form a buried layer below the trench, and after a up-diffusion step a N drain-drift region extends between the N+ substrate and the bottom of the trench. The result is a more controllable doping profile of the N-type dopant below the trench. The body region may also be formed by implanting P-type dopant into the epitaxial layer, in which case the background doping of the epitaxial layer may be either lightly doped P- or N-type. A MOSFET constructed in accordance with this invention can have a reduced threshold voltage and on-resistance and an increased punchthrough breakdown voltage.
    • 在包括覆盖在N +衬底上的P型外延层的结构中形成沟槽MOSFET。 通过沟槽的底部将N型掺杂剂注入到P外延层中以在沟槽下方形成掩埋层,并且在上扩散步骤之后,N漏极漂移区在N +衬底和底层之间延伸 沟渠。 结果是沟槽下方的N型掺杂剂的更可控的掺杂分布。 体区也可以通过将P型掺杂剂注入到外延层中而形成,在这种情况下,外延层的背景掺杂可以是轻掺杂的P型或N型。 根据本发明构造的MOSFET可以具有降低的阈值电压和导通电阻以及增加的穿通击穿电压。