会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 64. 发明授权
    • Plasma enhanced chemical vapor deposition method of forming titanium silicide comprising layers
    • 等离子体增强化学气相沉积法形成含硅化钛的层
    • US06586285B1
    • 2003-07-01
    • US10094017
    • 2002-03-06
    • Cem BasceriIrina VasilyevaAmmar DerraaPhilip H. CampbellGurtej S. Sandhu
    • Cem BasceriIrina VasilyevaAmmar DerraaPhilip H. CampbellGurtej S. Sandhu
    • H01L2184
    • C23C16/4407C23C16/14C23C16/42C23C16/4404
    • A first cleaning is conducted on a plasma enhanced chemical vapor deposition chamber at room ambient pressure. After the first cleaning, elemental titanium comprising layers are chemical vapor deposited on a first plurality of substrates within the chamber using at least TiCl4. Thereafter, titanium silicide comprising layers are plasma enhanced chemical vapor deposited on a second plurality of substrates within the chamber using at least TiCl4 and a silane. Thereafter, a second cleaning is conducted on the chamber at ambient room pressure. In one implementation after the first cleaning, an elemental titanium comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber. In another implementation, a titanium silicide comprising layer is chemical vapor deposited over internal surfaces of the chamber while no semiconductor substrate is received within the chamber.
    • 在室内环境压力下,在等离子体增强化学气相沉积室上进行第一次清洗。 在第一次清洁之后,使用至少TiCl 4,在室内的第一组多个衬底上化学气相沉积包含层的元素钛。 此后,包含层的硅化钛是使用至少TiCl 4和硅烷沉积在室内的第二多个基板上的等离子体增强化学气相。 此后,在室内在室内进行第二清洗。 在第一次清洁之后的一个实施方案中,元素钛包含层在室的内表面上化学气相沉积,而在室内没有接收半导体衬底。 在另一个实施方案中,包含硅化钛的层在室的内表面上化学气相沉积,而在腔室内不接收半导体衬底。
    • 66. 发明授权
    • Physical vapor deposition methods
    • US06558517B2
    • 2003-05-06
    • US10003575
    • 2001-10-29
    • Cem Basceri
    • Cem Basceri
    • C23C1424
    • C23C16/45523C23C14/088C23C14/3492C23C16/409C23C16/45557H01L28/55
    • The invention includes chemical vapor deposition and physical vapor deposition methods of forming high k ABO3 comprising dielectric layers on a substrate, where “A” is selected from the group consisting of Group IIA and Group IVB elements and mixtures thereof, and where “B” is selected from the group consisting of Group IVA metal elements and mixtures thereof. In one implementation, a plurality of precursors comprising A, B and O are fed to a chemical vapor deposition chamber having a substrate positioned therein under conditions effective to deposit a high k ABO3 comprising dielectric layer over the substrate. During the feeding, pressure within the chamber is varied effective to produce different concentrations of A at different elevations in the deposited layer and where higher comparative pressure produces greater concentration of B in the deposited layer. In one implementation, a subatmospheric physical vapor deposition method of forming a high k ABO3 comprising dielectric layer on a substrate includes providing a sputtering target comprising ABO3 and a substrate to be deposited upon within a physical vapor deposition chamber. A sputtering gas is fed to the chamber under conditions effective to sputter the target and deposit a high k ABO3 comprising dielectric layer over the substrate. During the feeding, pressure is varied within the chamber effective to produce different concentrations of B at different elevations in the deposited layer and where higher comparative pressure produces greater concentration of B in the deposited layer.