会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Shallow trench isolation for thin silicon/silicon-on-insulator substrates by utilizing polysilicon
    • US06602759B2
    • 2003-08-05
    • US09731620
    • 2000-12-07
    • Atul C. AjmeraKlaus D. BeyerDominic J. Schepis
    • Atul C. AjmeraKlaus D. BeyerDominic J. Schepis
    • H01L2176
    • H01L21/76227
    • A method for forming an isolation trench in a silicon or silicon-on-insulator substrate is described in which a trench is formed in the semiconductor structure (containing a multiple layer structure of Si, SiO2, and SiN layers) and an undoped polysilicon layer is deposited on the bottom and sidewalls of the trench and on the surface of the region adjacent to the trench. A substantial portion of the trench is left unfilled by the undoped polysilicon layer deposited. The polysilicon layer is thermally oxidized to form a thermal oxide that fills the trench and thereby avoids forming a birds-beak formation of the thermal oxide above the sidewalls of the trench. The isolation structure may be planarized by either removing the polysilicon layer from the region adjacent to the trench before oxidation or later removing the oxide from the SiN layer and adjusting height of the oxide in the trench. Alternatively, either a doped polysilicon layer or a doped SiO2 layer may be formed above the silicon nitride layer before the undoped polysilicon layer is deposited. In this case, the isolation structure is heat treated prior to oxidization to drive dopants from the doped layer into the undoped polysilicon layer, thereby forming a secondarily doped polysilicon layer from the undoped polysilicon layer. The doped layers are then removed by selective wet etching and expose the silicon nitride layer prior to oxidation.
    • 53. 发明授权
    • Method for forming notch gate having self-aligned raised source/drain structure
    • 用于形成具有自对准凸起源极/漏极结构的陷波栅的方法
    • US06506649B2
    • 2003-01-14
    • US09811706
    • 2001-03-19
    • Ka Hing FungAtul C. AjmeraVictor KuDominic J. Schepis
    • Ka Hing FungAtul C. AjmeraVictor KuDominic J. Schepis
    • H01L21336
    • H01L29/66628H01L29/42376H01L29/665H01L29/7835
    • An innovative MOSFET having a raised source drain (RSD) is constructed prior to implanting source-drain dopants. The RSD structure thus built has a distinct advantage in that the offset from the RSD to the MOSFET channel is fully adjustable to minimize the overlap capacitance in the device. The RSD construction uses a selective epitaxial process to effectively reduce the drain-source resistance. This improvement is even more significant in thin-film SOI technology. Using an RSD, the film outside the channel area thickens which, in turn, reduces the parasitic resistance. The method of constructing such a structure includes the steps of: forming a notch gate on a top surface of a substrate; covering the notch gate and the top surface of the substrate with a conformal dielectric film; etching the dielectric film to expose an upper surface of the notch gate and selected exposed areas of the substrate; selectively growing silicon on the etched surface of the gate notch and on the etched surface of the substrate; implanting doping to form a drain-source area; forming spacers on the vertical walls of the notch gate; and forming a salicide on the notch gate and on the source and drain areas. The MOSFET device may be alternately be built without the formation of spacers.
    • 在植入源极 - 漏极掺杂剂之前,构建了具有升高的源极漏极(RSD)的创新型MOSFET。 如此构建的RSD结构具有明显的优点,即从RSD到MOSFET通道的偏移是完全可调的,以最小化器件中的重叠电容。 RSD结构使用选择性外延工艺来有效降低漏极 - 源极电阻。 这种改进在薄膜SOI技术中更为显着。 使用RSD,通道区域外部的膜变厚,这又降低了寄生电阻。 构造这种结构的方法包括以下步骤:在衬底的顶表面上形成陷波门; 用保形绝缘膜覆盖基板的切口栅和顶表面; 蚀刻电介质膜以暴露陷波栅的上表面和基板的选定的曝光区域; 选择性地在栅极刻蚀的蚀刻表面上和衬底的蚀刻表面上生长硅; 注入掺杂以形成漏 - 源区; 在凹口门的垂直壁上形成间隔物; 并在凹口门和源极和漏极区域上形成自对准硅化物。 可以交替地构建MOSFET器件而不形成间隔物。