会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Method and structure for textured surfaces in floating gate tunneling oxide devices
    • 浮栅隧道氧化器件中纹理化表面的方法
    • US06242304B1
    • 2001-06-05
    • US09087539
    • 1998-05-29
    • Joseph E. GeusicLeonard Forbes
    • Joseph E. GeusicLeonard Forbes
    • H01L21336
    • H01L21/28273H01L29/511H01L29/7883
    • A method and structure for textured surfaces in non volatile floating gate tunneling oxide (FLOTOX) devices, e.g. FLOTOX transistors, are provided. The present invention capitalizes on using “self-structured masks” and a controlled etch to form nanometer scale microtip arrays in the textured surfaces. The microtips in the array of microtips have a more uniform size and shape and higher density (˜1012/cm2) at the substrate/tunnel oxide (Si/SiO2) interface than in current generation FLOTOX transistors. This higher density is four orders of magnitude greater than that which has been in use with FLOTOX transistor technology. In result, the new method and structure produce significantly larger tunneling currents for a given voltage than attained in prior work. The new method and structure are advantageously suited for the much higher density, non volatile FLOTOX transistors desired for use in flash memories and in electronically erasable and programmable read only memories (EEPROMs). These FLOTOX transistors are candidates for replacing the low power operation transistors found in DRAMs.
    • 非挥发性浮栅隧道氧化物(FLOTOX)器件中的纹理表面的方法和结构,例如。 FLOTOX晶体管。 本发明利用“自组织掩模”和受控蚀刻在纹理化表面中形成纳米级微尖头阵列。 微尖端阵列中的微尖端在衬底/隧道氧化物(Si / SiO 2)界面处具有比当前一代FLOTOX晶体管更大的尺寸和形状以及更高的密度(〜1012 / cm2)。 这种更高的密度比使用FLOTOX晶体管技术的密度高四个数量级。 结果,对于给定的电压,新的方法和结构产生明显较大的隧道电流,这在以前的工作中获得。 新的方法和结构有利地适用于期望用于闪存和电可擦除和可编程只读存储器(EEPROM)的更高密度,非易失性FLOTOX晶体管。 这些FLOTOX晶体管是替代在DRAM中发现的低功率运算晶体管的候选者。
    • 53. 发明授权
    • Methods of forming coaxial integrated circuitry interconnect lines
    • 形成同轴集成电路互连线的方法
    • US06143616A
    • 2000-11-07
    • US917449
    • 1997-08-22
    • Joseph E. GeusicKie Y. AhnLeonard Forbes
    • Joseph E. GeusicKie Y. AhnLeonard Forbes
    • H01L21/768H01L21/20
    • H01L21/76898H01L2223/6622
    • Methods of forming integrated circuitry lines such as coaxial integrated circuitry interconnect lines, and related integrated circuitry are described. An inner conductive coaxial line component is formed which extends through a substrate. An outer conductive coaxial line component and coaxial dielectric material are formed, with the coaxial dielectric material being formed operably proximate and between the inner and outer conductive coaxial line components. In a preferred implementation, the substrate includes front and back surfaces, and a hole is formed which extends through the substrate and between the front and back surfaces. In one implementation, the outer conductive coaxial line component constitutes doped semiconductive material. In another implementation, such constitutes a layer of metal-comprising material. A layer of dielectric material is formed over and radially inwardly of the outer line component. Conductive material is then formed over and radially inwardly of the dielectric material layer. The latter conductive material constitutes an inner conductive coaxial line component. In a preferred implementation, the inner conductive coaxial line component is formed by forming a first material within the hole. A second conductive material is formed over the first material. Subsequently, the substrate is exposed to conditions which are effective to cause the second material to replace the first material.
    • 描述形成诸如同轴集成电路互连线和集成电路的集成电路线的方法。 形成延伸穿过衬底的内导电同轴线部件。 形成外部导电同轴线路部件和同轴电介质材料,其中同轴电介质材料可靠地形成在内部和外部导电同轴线路部件之间。 在优选的实施方案中,衬底包括前表面和后表面,并且形成了延伸穿过衬底并且在前表面和后表面之间的孔。 在一个实施方案中,外导电同轴线组件构成掺杂的半导体材料。 在另一个实施方案中,这样构成一层含金属的材料。 介电材料层形成在外线部件的上部和内部。 然后在电介质材料层的上部和内部形成导电材料。 后一导电材料构成内导电同轴线组件。 在优选的实施方案中,内导电同轴线部件通过在孔内形成第一材料而形成。 在第一材料上形成第二导电材料。 随后,将基板暴露于有效地使第二材料替代第一材料的条件。
    • 56. 发明授权
    • Method for operating a memory device having an amorphous silicon carbide gate insulator
    • 用于操作具有非晶碳化硅栅极绝缘体的存储器件的方法
    • US07196929B1
    • 2007-03-27
    • US09135413
    • 1998-08-14
    • Leonard ForbesJoseph E. GeusicKie Y. Ahn
    • Leonard ForbesJoseph E. GeusicKie Y. Ahn
    • G11C16/04
    • G11C16/0416
    • A floating gate transistor has a reduced barrier energy at an interface with an adjacent amorphous silicon carbide (a-SiC) gate insulator, allowing faster charge transfer across the gate insulator at lower voltages. Data is stored as charge on the floating gate. The data charge retention time on the floating gate is reduced. The data stored on the floating gate is dynamically refreshed. The floating gate transistor provides a dense and planar dynamic electrically alterable and programmable read only memory (DEAPROM) cell adapted for uses such as for a dynamic random access memory (DRAM) or a dynamically refreshed flash EEPROM memory. The floating gate transistor provides a high gain memory cell and low voltage operation.
    • 浮栅晶体管在与相邻的非晶碳化硅(a-SiC)栅极绝缘体的界面处具有减小的势垒能,允许在较低电压下更快地跨栅极绝缘体的电荷传输。 数据作为电荷存储在浮动栅极上。 浮动栅极上的数据电荷保留时间减少。 存储在浮动门上的数据被动态刷新。 浮栅晶体管提供了适用于诸如用于动态随机存取存储器(DRAM)或动态刷新的快闪EEPROM存储器的密集且平面的动态电可更改和可编程只读存储器(DEAPROM)单元。 浮栅晶体管提供高增益存储单元和低电压工作。