会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Atomic force microscope having cantilever with piezoresistive deflection
sensor
    • 具有压阻偏转传感器的悬臂的原子力显微镜
    • US5345815A
    • 1994-09-13
    • US954695
    • 1992-09-30
    • Thomas AlbrechtMarco TortoneseRobert Barrett
    • Thomas AlbrechtMarco TortoneseRobert Barrett
    • G01B7/16G01B20060101G01B7/34G01B21/30G01L20060101G01L1/18G01Q20/04G01Q60/38G01Q60/40G01Q70/02H01J37/28H01L21/34
    • G01Q60/38B82Y35/00G01Q20/04Y10S977/851Y10S977/873
    • A microminiature cantilever structure is provided having a cantilever arm with a piezoresistive resistor embedded in at least the fixed end of the cantilever arm. Deflection of the free end of the cantilever arm produces stress in the base of the cantilever. That stress changes the piezoresistive resistor's resistance at the base of the cantilever in proportion to the cantilever arm's deflection. Resistance measuring apparatus is coupled to the piezoresistive resistor to measure its resistance and to generate a signal corresponding to the cantilever arm's deflection. The microminiature cantilever is formed on a semiconductor substrate. A portion of the free end of the cantilever arm is doped to form an electrically separate U-shaped piezoresistive resistor. The U-shaped resistor has two legs oriented parallel to an axis of the semiconductor substrate having a non-zero piezoresistive coefficient. A metal layer is deposited over the semiconductor's surface and patterned to form an electrical connection between the piezoresistive resistor and a resistance measuring circuit, enabling measurement of the piezoresistive resistor's resistance. Finally, the semiconductor substrate below the cantilever arm is substantially removed so as to form a cantilevered structure, and a tip is connected to the free end of the cantilever arm to facilitate the structure's use in an atomic force microscope.
    • 提供了一种微型悬臂结构,其具有悬臂,其具有嵌入到悬臂的至少固定端的压阻电阻器。 悬臂的自由端的偏转在悬臂的底部产生应力。 该应力与悬臂的偏转成比例地改变了压阻电阻器在悬臂底部的电阻。 电阻测量装置耦合到压阻电阻器以测量其电阻并产生对应于悬臂的偏转的信号。 微型悬臂形成在半导体衬底上。 掺杂悬臂的自由端的一部分以形成电分离的U形压阻电阻器。 U形电阻器具有平行于具有非零压阻系数的半导体衬底的轴线定向的两个腿。 金属层沉积在半导体表面上并被图案化以在压阻电阻器和电阻测量电路之间形成电连接,使得能够测量压阻电阻器的电阻。 最后,基本上移除悬臂下面的半导体衬底以形成悬臂结构,并且尖端连接到悬臂的自由端,以便于结构在原子力显微镜中的使用。
    • 43. 发明授权
    • Atomic force microscope
    • 原子力显微镜
    • US5329808A
    • 1994-07-19
    • US85053
    • 1993-07-02
    • Virgil B. ElingsJohn A. Gurley
    • Virgil B. ElingsJohn A. Gurley
    • G01B7/34G01B21/30G01Q20/00G01Q30/04G01Q60/00
    • G01Q10/065B82Y35/00G01Q60/363Y10S977/851
    • This invention is an atomic force microscope having a digitally calculated feedback system which can perform force spectroscopy on a sample in order to map out the local stiffness of the sample in addition to providing the topography of the sample. It consists of a three-dimensional piezoelectric scanner, scanning either the sample of a force sensor. The force sensor is a contact type with a tip mounted on a cantilever and a sensor to detect the deflection of the lever at the tip. The signal from the sensor goes to an A-D convertor and is then processed by high-speed digital electronics to control the vertical motion of the sample or sensor. In operation, the digital electronics raise and lower the piezoelectric scanner during the scan to increase and decrease the force of the tip on the sample and to use the sensor signal to indicate the change in height of the tip to measure the which is the spring constant of the sample. This constant can be determined with nanometer spatial resolution. At the same time, the instrument can determine the topography of the sample with nanometer resolution. In an alternate embodiment, the lever is connected to a separate piezoelectric driver to vary the force on the tip. This improved AFM can also be used to periodically reset the force at which the tip contacts the sample and quickly replace the tip on the sample in the event that the tip loses contact with the surface.
    • 本发明是具有数字计算的反馈系统的原子力显微镜,其可以对样品进行力谱分析,以便除了提供样品的形貌外,还绘出样品的局部刚度。 它由三维压电扫描仪组成,扫描力传感器的样本。 力传感器是具有安装在悬臂上的尖端和用于检测杆在尖端处的偏转的传感器的接触型。 来自传感器的信号进入A-D转换器,然后由高速数字电子设备进行处理,以控制样品或传感器的垂直运动。 在操作中,数字电子装置在扫描过程中升高和降低压电扫描器,以增加和减小尖端在样品上的力,并使用传感器信号来指示尖端的高度变化,以测量弹簧常数 的样品。 该常数可以用纳米空间分辨率确定。 同时,仪器可以用纳米分辨率确定样品的形貌。 在替代实施例中,杠杆连接到单独的压电驱动器以改变尖端上的力。 这种改进的AFM也可以用于周期性地重置尖端与样品接触的力,并且在尖端与表面接触的情况下快速更换样品上的尖端。
    • 44. 发明授权
    • Scanning probe microscope including height plus deflection method and
apparatus to achieve both high resolution and high speed scanning
    • 扫描探针显微镜包括高度偏转方法和设备,以实现高分辨率和高速扫描
    • US5260572A
    • 1993-11-09
    • US929676
    • 1992-08-13
    • Daniel R. Marshall
    • Daniel R. Marshall
    • G01Q30/06G01Q10/06G01Q60/00G01Q70/08H01J37/28
    • G01Q30/06B82Y35/00G01Q10/06Y10S977/851
    • A scanning probe microscope achieves increased resolution and speed in profiling a surface of a sample by producing an error signal representing a difference between a probe signal and a desired value of the probe signal. The error signal is compensated for delay in response of a position translator. The position translator moves in response to the compensated error signal to produce a change in the probe signal dependent upon how closely the probe moves along the sample surface. A signal representing height of the sample surface is produced by filtering and scaling the probe signal and summing the resulting signal with the compensated error signal. Both high frequency components of the probe signal and low frequency components of the compensated error signal are included in the sample surface height-representing signal, resulting in very high image resolution without sacrificing scanning speed.
    • 扫描探针显微镜通过产生表示探针信号和探测信号的期望值之间的差异的误差信号来实现提高样品表面的分辨率和速度。 误差信号由位置转换器的响应补偿延迟。 位置转换器响应于补偿的误差信号而移动,以根据探头沿着样品表面移动的程度而产生探针信号的变化。 表示样品表面的高度的信号是通过对探测信号进行滤波和缩放并将得到的信号与经补偿的误差信号相加来产生的。 探头信号的高频分量和补偿误差信号的低频分量都包含在样品表面高度表示信号中,导致非常高的图像分辨率而不牺牲扫描速度。
    • 46. 发明授权
    • Feedback control for scanning tunnel microscopes
    • 扫描隧道显微镜的反馈控制
    • US4889988A
    • 1989-12-26
    • US215729
    • 1988-07-06
    • Virgil B. ElingsJohn A. Gurley
    • Virgil B. ElingsJohn A. Gurley
    • H01J37/28G01N37/00G01Q10/06G01Q20/00G01Q20/02G01Q20/04G01Q30/06G01Q60/10G05D3/00G05D3/12
    • G01Q10/065B82Y35/00G01Q30/06Y10S977/851
    • A feedback control system for enhancing the feedback loop characteristics of a vertical axis control in a scanning tunneling microscope or the like, including a tip member for positioning relative to a surface for measuring the topography of the surface. A horizontal control coupled to the tip for providing a plurality of adjacent horizontal scans across the surface. A vertical control coupled to the tip for providing a vertical control of the tip during the plurality of adjacent horizontal scans. A local error signal produced in accordance with the vertical position of the tip relative to the surface in real time during the plurality of adjacent horizontal scans. A storage member responsive to the local error signal for storing the local error signal for producing a delayed error signal representing the vertical position of the tip relative to the surface at an earlier time, and a vertical tip control signal coupled to the vertical control and formed by combining the local error signal and the delayed error signal for enhancing the control of the vertical position of the tip.
    • 一种用于增强扫描隧道显微镜等中的垂直轴控制的反馈环路特性的反馈控制系统,包括用于相对于用于测量表面的形貌的表面定位的尖端构件。 耦合到尖端的水平控制,用于跨越表面提供多个相邻的水平扫描。 耦合到尖端的垂直控制,用于在多个相邻水平扫描期间提供尖端的垂直控制。 在多个相邻水平扫描期间实时地根据尖端相对于表面的垂直位置产生的局部误差信号。 响应于本地误差信号的存储构件,用于存储局部误差信号,用于产生表示尖端相对于表面在较早时间的垂直位置的延迟误差信号,以及耦合到垂直控制并形成的垂直尖端控制信号 通过组合局部误差信号和延迟误差信号来增强对尖端的垂直位置的控制。