会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 45. 发明授权
    • Method of making metal gate sub-micron MOS transistor
    • 制造金属栅极亚微米MOS晶体管的方法
    • US06274421B1
    • 2001-08-14
    • US09004991
    • 1998-01-09
    • Sheng Teng HsuDavid R. EvansTue Nguyen
    • Sheng Teng HsuDavid R. EvansTue Nguyen
    • H01L218238
    • H01L29/6659H01L21/28088H01L21/28097H01L21/76895H01L21/76897H01L21/82385H01L29/42376H01L29/4966H01L29/4975H01L29/66545
    • A MOS transistor is formed on a single crystal silicon substrate doped to form a conductive layer of a first type, and includes: an active region formed on said substrate; a source region and a drain region located in said active region, doped to form conductive channels of a second type; a metal gate region located in said active region between said source region and said drain region, wherein said metal gate has a width of less than one micron; a gate oxide region located over said gate region; an oxide region located over the structure; and a source electrode, a gate electrode and a drain electrode, each connected to their respective regions, and each formed of a combination of a contact metal and an electrode metal. An alternate embodiment includes a pair of MOS transistors which have an interconnect between their gate electrodes and the drain electrode of one transistor and the drain electrode of the other transistor.
    • MOS晶体管形成在掺杂以形成第一类型的导电层的单晶硅衬底上,并且包括:形成在所述衬底上的有源区; 位于所述有源区中的源极区和漏极区,被掺杂以形成第二类型的导电沟道; 位于所述源极区域和所述漏极区域之间的所述有源区域中的金属栅极区域,其中所述金属栅极具有小于1微米的宽度; 位于所述栅极区域上方的栅极氧化物区域; 位于结构上方的氧化物区域; 以及源电极,栅电极和漏电极,各自连接到它们各自的区域,并且各自由接触金属和电极金属的组合形成。 替代实施例包括一对MOS晶体管,它们在其栅电极和一个晶体管的漏电极和另一晶体管的漏电极之间具有互连。
    • 47. 发明申请
    • Back-To-Back Metal/Semiconductor/Metal (MSM) Schottky Diode
    • 背对背金属/半导体/金属(MSM)肖特基二极管
    • US20090032817A1
    • 2009-02-05
    • US12234663
    • 2008-09-21
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • H01L29/04H01L21/329
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    • 提供了用于从硅(Si)半导体形成金属/半导体/金属(MSM)背对背肖特基二极管的方法。 该方法在底电极和顶电极之间沉积Si半导体层,并形成具有阈值电压,击穿电压和开/关电流比的MSM二极管。 响应于控制Si半导体层厚度,该方法能够修改MSM二极管的阈值电压,击穿电压和导通/截止电流比。 通常,响应于Si厚度的增加,阈值和击穿电压都增加。 关于开/关电流比,存在最佳厚度。 该方法能够使用化学气相沉积(CVD)或DC溅射形成非晶Si(a-Si)和多晶硅(polySi)半导体层。 Si半导体可以掺杂有V族施主材料,其降低阈值电压并增加击穿电压。